Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Visualizing biological networks in 4-D

A DNA structure as seen through the 4D electron microscope invented at Caltech.
Credit: Zewail & Lorenz/Caltech
A DNA structure as seen through the 4D electron microscope invented at Caltech.

Credit: Zewail & Lorenz/Caltech

Abstract:
Every great structure, from the Empire State Building to the Golden Gate Bridge, depends on specific mechanical properties to remain strong and reliable. Rigidity—a material's stiffness—is of particular importance for maintaining the robust functionality of everything from colossal edifices to the tiniest of nanoscale structures. In biological nanostructures, like DNA networks, it has been difficult to measure this stiffness, which is essential to their properties and functions. But scientists at the California Institute of Technology (Caltech) have recently developed techniques for visualizing the behavior of biological nanostructures in both space and time, allowing them to directly measure stiffness and map its variation throughout the network.

Visualizing biological networks in 4-D

Pasadena, CA | Posted on February 11th, 2013

The new method is outlined in the February 4 early edition of the Proceedings of the National Academy of Sciences (PNAS).

"This type of visualization is taking us into domains of the biological sciences that we did not explore before," says Nobel Laureate Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics at Caltech, who coauthored the paper with Ulrich Lorenz, a postdoctoral scholar in Zewail's lab. "We are providing the methodology to find out—directly—the stiffness of a biological network that has nanoscale properties."

Knowing the mechanical properties of DNA structures is crucial to building sturdy biological networks, among other applications. According to Zewail, this type of visualization of biomechanics in space and time should be applicable to the study of other biological nanomaterials, including the abnormal protein assemblies that underlie diseases like Alzheimer's and Parkinson's.

Zewail and Lorenz were able to see, for the first time, the motion of DNA nanostructures in both space and time using the four-dimensional (4D) electron microscope developed at Caltech's Physical Biology Center for Ultrafast Science and Technology. The center is directed by Zewail, who created it in 2005 to advance understanding of the fundamental physics of chemical and biological behavior.

"In nature, the behavior of matter is determined by its structure—the arrangements of its atoms in the three dimensions of space—and by how the structure changes with time, the fourth dimension," explains Zewail. "If you watch a horse gallop in slow motion, you can follow the time of the gallops, and you can see in detail what, for example, each leg is doing over time. When we get to the nanometer scale, that is a different story—we need to improve the spatial resolution to a billion times that of the horse in order to visualize what is happening."

Zewail was awarded the 1999 Nobel Prize in Chemistry for his development of femtochemistry, which uses ultrashort laser flashes to observe fundamental chemical reactions occurring at the timescale of the femtosecond (one millionth of a billionth of a second). Although femtochemistry can capture atoms and molecules in motion, giving the time dimension, it cannot concurrently show the dimensions of space, and thus the structure of the material. This is because it utilizes laser light with wavelengths that far exceed the dimension of a nanostructure, making it impossible to resolve and image nanoscale details in tiny physical structures such as DNA .

To overcome this major hurdle, the 4D electron microscope employs a stream of individual electrons that scatter off objects to produce an image. The electrons are accelerated to wavelengths of picometers, or trillionths of a meter, providing the capability for visualizing the structure in space with a resolution a thousand times higher than that of a nanostructure, and with a time resolution of femtoseconds or longer.

The experiments reported in PNAS began with a structure created by stretching DNA over a hole embedded in a thin carbon film. Using the electrons in the microscope, several DNA filaments were cut away from the carbon film so that a three-dimensional, free-standing structure was achieved under the 4D microscope.

Next, the scientists employed laser heat to excite oscillations in the DNA structure, which were imaged using the electron pulses as a function of time—the fourth dimension. By observing the frequency and amplitude of these oscillations, a direct measure of stiffness was made.

"It was surprising that we could do this with a complex network," says Zewail. "And yet by cutting and probing, we could go into a selective area of the network and find out about its behavior and properties."

Using 4D electron microscopy, Zewail's group has begun to visualize protein assemblies called amyloids, which are believed to play a role in many neurodegenerative diseases, and they are continuing their investigation of the biomechanical properties of these networks. He says that this technique has the potential for broad applications not only to biological assemblies, but also in the materials science of nanostructures.

Funding for the research outlined in the PNAS paper, "Biomechanics of DNA structures visualized by 4D electron microscopy," was provided by the National Science Foundation and the Air Force Office of Scientific Research. The Physical Biology Center for Ultrafast Science and Technology at Caltech is supported by the Gordon and Betty Moore Foundation.

Written by Katie Neith

####

For more information, please click here

Contacts:
Deborah Williams-Hedges

626-395-3227

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Dr. Zewail's Website:

Physical Biology Center for Ultrafast Science and Technology at Caltech:

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Govt.-Legislation/Regulation/Funding/Policy

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Nanomedicine

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Discoveries

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

The random raman laser: A new light source for the microcosmos May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Military

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project