Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NREL and Partners Demonstrate Quantum Dots that Assemble Themselves: Surprising breakthrough could bolster quantum photonics, solar cell efficiency

Abstract:
Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough that could improve solar cells, quantum computing, and lighting devices.

NREL and Partners Demonstrate Quantum Dots that Assemble Themselves: Surprising breakthrough could bolster quantum photonics, solar cell efficiency

Golden, CO | Posted on February 8th, 2013

Quantum dots are tiny crystals of semiconductor a few billionths of a meter in diameter. At that size they exhibit beneficial behaviors of quantum physics such as forming electron-hole pairs and harvesting excess energy.

The scientists demonstrated how quantum dots can self-assemble at the apex of the gallium arsenide/aluminum gallium arsenide core/shell nanowire interface. Crucially, the quantum dots, besides being highly stable, can be positioned precisely relative to the nanowire's center. That precision, combined with the materials' ability to provide quantum confinement for both the electrons and the holes, makes the approach a potential game-changer.

Electrons and holes typically locate in the lowest energy position within the confines of high-energy materials in the nanostructures. But in the new demonstration, the electron and hole, overlapping in a near-ideal way, are confined in the quantum dot itself at high energy rather than located at the lowest energy states. In this case, that's the gallium-arsenide core. It's like hitting the bulls-eye rather than the periphery.

The quantum dots, as a result, are very bright, spectrally narrow and highly anti-bunched, displaying excellent optical properties even when they are located just a few nanometers from the surface - a feature that even surprised the scientists.

"Some Swiss scientists announced that they had achieved this, but scientists at the conference had a hard time believing it," said NREL senior scientist Jun-Wei Luo, one of the co-authors of the study. Luo got to work constructing a quantum-dot-in-nanowire system using NREL's supercomputer and was able to demonstrate that despite the fact that the overall band edges are formed by the gallium Arsenide core, the thin aluminum-rich barriers provide quantum confinement both for the electrons and the holes inside the aluminum-poor quantum dot. That explains the origin of the highly unusual optical transitions.

Several practical applications are possible. The fact that stable quantum dots can be placed very close to the surface of the nanometers raises a huge potential for their use in detecting local electric and magnetic fields. The quantum dots also could be used to charge converters for better light-harvesting, as in the case of photovoltaic cells.

The team of scientists working on the project came from universities and laboratories in Sweden, Switzerland, Spain, and the United States.

####

About National Renewable Energy Laboratory (NREL)
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

For more information, please click here

Contacts:
William Scanlon
303-275-4051

Copyright © National Renewable Energy Laboratory (NREL)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper on the new technology, "Self-assembled Quantum Dots in a Nanowire System for Quantum Photonics," appears in the current issue of the scientific journal Nature Materials:

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Self Assembly

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Quantum Computing

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic