Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Boston College researchers' unique nanostructure produces novel 'plasmonic halos': Nanoscopic microcavities offer newfound control in light filtering

Boston College researchers have constructed a unique nanostructure that exploits microcavity features to filter visible light into "plasmonic halos" of selected color output. The device could have applications in areas such as biomedical plasmonics or discrete optical filtering.

Credit: Nano Letters
Boston College researchers have constructed a unique nanostructure that exploits microcavity features to filter visible light into "plasmonic halos" of selected color output. The device could have applications in areas such as biomedical plasmonics or discrete optical filtering.

Credit: Nano Letters

Abstract:
Using the geometric and material properties of a unique nanostructure, Boston College researchers have uncovered a novel photonic effect where surface plasmons interact with light to form "plasmonic halos" of selectable output color. The findings appear in the journal Nano Letters.

Boston College researchers' unique nanostructure produces novel 'plasmonic halos': Nanoscopic microcavities offer newfound control in light filtering

Chestnut Hill, MA | Posted on February 7th, 2013

The novel nanostructure proved capable of manipulating electron waves known as surface plasmon polaritons, or SPPs, which were discovered in the 1950s but of late have garnered the attention of scientists for their potential applications in fields that include waveguiding, lasing, color filtering and printing.

The team put a layer of a polymer film on a glass substrate and then dotted the surface with holes precisely defined by a process of electron beam lithography, using the BC Integrated Sciences Nanofabrication Clean Room facility. The team next applied a layer of silver, thick enough to be nontransparent to visible light. In addition to covering the thin film on top, the silver coated the contours of the holes in the film, as well as the exposed circles of the glass substrate below. The effect produced an array of silver microcavities.

When the researchers directed light from below and through the glass substrate, light "leaking" through nanoscale gaps on the perimeters of the microcavities created SPP waves on their top surfaces. At particular wavelengths of the incident light, these waves formed modes or resonances analogous to acoustic waves on a drumhead, which in turn effectively filtered the light transmitted to the far side, accounting for the "halo" appearance, said Boston College Ferris Professor of Physics Michael Naughton, who co-authored the report with Senior Research Associate Michael J. Burns and doctoral student and lead author Fan Ye. The team's research was funded by the W. M. Keck Foundation.

Central to this control effect are "step gaps" formed along the perimeter of each circle, which give the nanostructure the ability to modulate which waves of light pass through. It is within this geometry that the interaction of light upon the silver surface coating resulted in the excitation of plasmon waves, said Naughton. Examination of the SPPs by Mr. Ye using a near-field scanning optical microscope offered unique insights into the physics at work within the structure, Naughton said.

By adjusting the type of metal used to coat the structure or varying the circumferences of the microcavities, Naughton said the step-gap structure is capable of manipulating the optical properties of the device in the visible light range, giving the researchers newfound control in light filtering.

This kind of control, the team reports, could have applications in areas such as biomedical plasmonics or discrete optical filtering.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The report is available at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project