Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanostructures with Living Cells

Using a laser beam (red), a three dimensional grid can be produced, which keeps the cell in place.
Using a laser beam (red), a three dimensional grid can be produced, which keeps the cell in place.

Abstract:
Using Laser Technology, Aleksandr Ovsianikov from the Vienna University of Technology wants to create microstructures with embedded living cells. This project will be funded by an ERC Starting Grant.

Nanostructures with Living Cells

Vienna, Austria | Posted on February 6th, 2013

The behavior of cells strongly depends on their environment. If they are to be researched and manipulated, it is crucial to embed them in suitable surroundings. Aleksandr Ovsianikov is developing a laser system, which allows living cells to be incorporated into intricate taylor-made structures, similar to biological tissue, in which cells are surrounded by the extracellular matrix. This technology is particularly important for artificially growing biotissue, for finding new drugs or for stem cell research. Ovsianikov has now been awarded the ERC Starting Grant from the European Research Council (ERC) of approximately 1.5 million Euros.

High-Tech-Structures for Biomedical Research

"Growing cells on a flat surface is easy, but such cell cultures often behave differently from the cells in a real three dimensional tissue", says Aleksandr Ovsianikov. While in two dimensions, conventional Petri dishes are used, no standard system has yet been available for three dimensional cell cultures. Such a 3D-matrix needs to be porous, so that the cells can be supplied with all the necessary nutrients. Furthermore, it is important that the geometry, chemical and mechanical parameters of this matrix can be precisely adjusted in order to study and induce necessary cell responses. Also, it is important that the structure can be produced quickly and in large quantities, as biological experiments usually have to be carried out in many cell cultures at the same time to yield reliable data.

These requirements are met very well by the research group "Additive Manufacturing Technologies" at the Vienna University of Technology. The interdisciplinary team of researchers has been developing special technologies to create three dimensional structures with precision on a sub-micrometer scale. "We want to develop a universal method, which can serve as a standard for three dimensional cell cultures and which can be adapted for different kinds of tissue and different kinds of cells", says Aleksandr Ovsianikov.

Laser Turns Liquid into Taylor-Made Scaffold

At first, the cells are suspended in a liquid, which mainly consists of water. Cell-friendly molecules are added, which react with light in a very special way: a focused laser beam breaks up double bonds at exactly the right places. A chemical chain reaction then causes the molecules to bond and create a polymer.

This reaction is only triggered when two laser photons are absorbed at the same time. Only within the focal point of the laser beam the density of photons is high enough for that. Material outside the focal point is not affected by the laser. "That is how we can define with unprecedented accuracy, at which points the molecules are supposed to bond and create a solid scaffold", explains Ovsianikov.

Guiding the focus of the laser beam through the liquid, a solid structure is created, in which living cells are incorporated. The surplus molecules which are not polymerized are simply washed away afterwards. This way, a hydrogel structure can be built, similar to the extracellular matrix which surrounds our own cells in living tissue. Ideas from nature are imitated in the lab and used for technological applications. This approach, called ‘bio-mimetics' plays an increasingly important role, especially in materials science. Aleksandr Ovsianikov is confident that in many cases, this technology will render animal testing unnecessary and yield much quicker and more significant results.

Turning Stem Cells into Tissue

Stem cell research is a particularly interesting field of application for the new technology. "It is known that stem cells can turn into different kinds of tissue, depending on their environment", says Aleksandr Ovsianikov. "On top of a hard surface, they tend to develop into bone cells, on a soft substrate they may turn into neurons." In the laser-generated 3D structure the rigidity of the substrate can be tuned so that different types of tissue can be created.

Lithuania, Germany, Austria

Interdisciplinary cooperation is crucial for this project, which connects engineering, material science, biology and chemistry. The possibility to work with experts in such a wide range of scientific fields at one single research facility was an important reason for Aleksandr Ovsianikov to come and work at the Vienna University of Technology. Born in Lithuania, Ovsianikov obtained his PhD in Hannover, Germany. Now he has been working at the Vienna University of Technology for two years.

Aleksandr Ovsianikov's project has now been awarded an ERC Starting Grant from the European Research Council. These grants aim to support up-and-coming researchers who have the proven potential of becoming independent research leaders. Within the next five years, Ovsianikov has the opportunity to establish his own research team and continue his quest to bring together materials science, physics and cell biology.

####

About Vienna University of Technology, TU Vienna
With its eight faculties - mathematics and geo-information, physics, technical chemistry, informatics, civil engineering, architecture and regional planning, mechanical engineering and business science, electrical engineering and information technology – the Vienna University of Technology covers the classic engineering disciplines.

The TU Vienna has a great pool of specialists who are acting in a wide range of different topics in research, teaching and as partners of the economy. More than 2000 scientists do their research and teaching at highly advanced and modern institutes – in summary about 70. Although fundamental research has priority at the TU Vienna applied research is also done. Moreover services are offered as high-tech problem solving and examination expertise for industry and economy. Innovation orientated companies are highly interested in co-operating with the Vienna University of Technology because of its high-tech and high-quality research and its openness for requests of the economy.

The Vienna University of Technology puts great emphasis on co-operation between its own institutes as well as with other universities. Therefore the TU Vienna participates in several European Union (EU) and other research programmes.

The aim of the university was and still is to belong to the best. The effort to reach this aim is also expressed in its mission statement: With the aim of providing technology for people, our mission is to develop scientific excellence and wide-ranging competence in our students.

For more information, please click here

Contacts:
Bettina Neunteufl
+43 (1) 58801 41025


Dr. Aleksandr Ovsianikov
Institute of Materials Science and Technology
Vienna University of Technology
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Review-article about Aleksandr Ovsianikovs research on Expert Reviews:

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Nanobiotechnology

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE