Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Achilles heel: Popular drug-carrying nanoparticles get trapped in bloodstream

Katawut Namdee, BME Ph.D. student, performs tests with different forms of drug carriers as part of the research done in ChE Professor Omolola Eniola Adefesco's lab in the GG Brown Building on North Campus Ann Arbor, MI on December 17, 2012. Image credit: Joseph Xu, Michigan Engineering Communications & Marketing
Katawut Namdee, BME Ph.D. student, performs tests with different forms of drug carriers as part of the research done in ChE Professor Omolola Eniola Adefesco's lab in the GG Brown Building on North Campus Ann Arbor, MI on December 17, 2012.

Image credit: Joseph Xu, Michigan Engineering Communications & Marketing

Abstract:
Many medically minded researchers are in hot pursuit of designs that will allow drug-carrying nanoparticles to navigate tissues and the interiors of cells, but University of Michigan engineers have discovered that these particles have another hurdle to overcome: escaping the bloodstream.

Achilles heel: Popular drug-carrying nanoparticles get trapped in bloodstream

Ann Arbor, MI | Posted on February 5th, 2013

Drug delivery systems promise precision targeting of diseased tissue, meaning that medicines could be more effective at lower doses and with fewer side effects. Such an approach could treat plaques in arteries, which can lead to heart attacks or strokes.

Drug carriers would identify inflamed vessel walls and deliver a drug that removes the deposits of calcium, cholesterol and other substances. Or, the carriers might seek out markers of cancer and kill off the small blood vessels in tumors, starving the malignant tissue of food and oxygen.

Nanoparticles, which have diameters under one micron, or one-thousandth of a millimeter, are thought to be the most promising drug carriers. Omolola Eniola-Adefeso, U-M professor of chemical engineering who studies nanoparticles in flowing blood, says the immune system can't get rid of them quickly.

"It's hard for a white blood cell to understand it has a nanoparticle next to it," she said.

Those same tiny dimensions allow them to slip through the cracks between cells and infiltrate cell membranes, where they can go to work administering medicine. But Eniola-Adefeso and her team found that these particles have an Achilles heel.

Blood vessels are the body's highways, and once nanoparticles get into the flow, they find it very difficult to reach the exits. In all vessels other than capillaries, the red cells in flowing blood tend to come together in the center.

"The red blood cells sweep those particles that are less than one micron in diameter and sandwich them," she said.

Trapped among the red cells, the nanoparticles can't reach the vessel wall to treat disease in the blood vessels or the tissue beyond.

With their recent work, including a study to be published recently in Langmuir, Eniola-Adefeso's team has shown that nanoparticle spheres face this problem in tiny arterioles and venules—one step up from capillaries—all the way up to centimeter-sized arteries.

They discovered this with the help of plastic channels lined with the same cells that make up the interiors of blood vessels. Human blood, with added nano- or microspheres, ran through the channels, and the team observed whether or not the spheres migrated to the channel walls and bound themselves to the lining. The researchers present the first visual evidence that few nanospheres make it to the vessel wall in blood flow.

"Prior to the work that we have done, people were operating under the assumption that particles will interact with the blood vessel at some point," Eniola-Adefeso said.

While a relatively small fraction of nanospheres filter out to the blood vessel walls, many more stay in the bloodstream and travel all over the body. Increasing the nanoparticle dose gives poor returns; after the team added five times more nanospheres to the blood samples, the number of spheres that bonded with the blood vessel lining only doubled.

"If localized drug delivery is an important goal, then nanospheres will fail," she said.

But it's not all bad news. The red blood cells tended to push microspheres with diameters of two microns or more toward the wall. Whether the blood flowed evenly, as it does in arterioles and venules, or in pulses, as occurs in arteries, the larger microspheres were able to reach the vessel wall and bind to it. When the team added more microspheres to the flow, they saw a proportional increase in microspheres on the vessel wall.

While microspheres are too large to serve as drug carriers into cell or tissue space on their own, the team suggested that microspheres could ferry nanospheres to the vessel wall, releasing them upon attachment. But the simpler approach may be nanoparticles of different shapes, which might escape the red blood cells on their own.

Eniola-Adefeso and her team are experimenting with rod-shaped nanoparticles.

"A sphere has no drift," she said, so nanospheres won't naturally move sideways out of the red cell flow. "When a rod is flowing, it drifts, and that drift moves it closer to the vessel wall."

####

For more information, please click here

Contacts:
Kate McAlpine

734-763-4386

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The newest paper titled "Margination Propensity of Vascular-Targeted Spheres from Blood Flow in a Microfluidic Model of Human Microvessels" is published online at:

The Cell Adhesion and Drug Delivery Lab:

Related News Press

News and information

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Nanomedicine

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Danish researchers behind vaccine breakthrough April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Discoveries

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Danish researchers behind vaccine breakthrough April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Announcements

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Safety-Nanoparticles/Risk management

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Microagents with revolutionary potential March 24th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic