Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Essential armchair reading for nanotube researchers: Rice, NIST kick off collaboration with comprehensive look at the fundamentals of most desirable nanotubes

Armchair carbon nanotubes, so named for the arrangement of atoms that make their ends look like armchairs, are the most desirable among nanotube researchers for their superior electrical properties. They are the subject of a new paper by Rice University and the National Institute of Standards and Technology. (Credit: Erik Hároz/Rice University)
Armchair carbon nanotubes, so named for the arrangement of atoms that make their ends look like armchairs, are the most desirable among nanotube researchers for their superior electrical properties. They are the subject of a new paper by Rice University and the National Institute of Standards and Technology.

(Credit: Erik Hároz/Rice University)

Abstract:
The first fruits of a cooperative venture between scientists at Rice University and the National Institute of Standards and Technology (NIST) have appeared in a paper that brings together a wealth of information for those who wish to use the unique properties of metallic carbon nanotubes.

Essential armchair reading for nanotube researchers: Rice, NIST kick off collaboration with comprehensive look at the fundamentals of most desirable nanotubes

Houston, TX | Posted on February 5th, 2013

The feature article published recently in the Royal Society of Chemistry journal Nanoscale gathers research about the separation and fundamental characteristics of armchair carbon nanotubes, which have been of particular interest to researchers trying to tune their electronic and optical properties.

This paper, said Rice physicist Junichiro Kono, provides scientists a valuable resource for detailed information about metallic carbon nanotubes, especially armchair nanotubes. "Basically, we summarized all our recent findings as well as all information we could find in the literature about metallic nanotubes, along with detailed accounts of preparation methods for metal-enriched nanotube samples, to show the community just how much we now understand about these one-dimensional metals," he said.

As part of the lengthy work, the team compiled and published tables of essential statistics, including optical properties, for a variety of metallic nanotubes. "We provide fundamental theoretical backgrounds and then show very detailed experimental results on unique properties of metallic nanotubes," Kono said. "This paper summarizes what kind of aspects are understood, and what is not, about fundamental optical processes in nanotubes and will make it easier for researchers to identify their spectroscopic features and transition energies."

Nanotubes come in many flavors, depending on their chirality. Chirality is a characteristic akin to the angles at which a flat sheet of paper might align when wrapped into a tube. Cut the tube in half and the atoms at the open edge would line up in the shape of an armchair, a zigzag or some variant. Even though their raw material is identical - chicken-wire-like hexagons of carbon - the chirality makes all the difference in how nanotubes transmit electricity.

Armchairs are the most coveted because they have no band gap; electrons flow through without resistance. Cables made with armchair nanotubes have the potential to move electricity over great distances with virtually no loss. That makes them the gold standard as the basic element of armchair quantum wire. The ongoing development of this very strong, lightweight, high-capacity cable could improve further the record properties of multifunctional carbon nanotube fibers that are being developed by the group of Rice Professor Matteo Pasquali.

The new work led by Kono and Robert Hauge, a distinguished faculty fellow in chemistry at Rice, along with scientists at NIST and Los Alamos National Laboratory, looks beyond the armchair's established electrical properties to further detail their potential for electronic, sensing, optical and photonic devices.

"Of course, to get there, we need really good samples," Kono said. "Many applications will rely on our ability to separate carbon nanotubes and then assemble macroscopically ordered structures consisting of single-chirality nanotubes. Nobody can do that at this point."

When a batch of nanotubes comes out of a furnace, it's a jumble of types. That makes detailed analysis of their characteristics -- let alone their practical use -- a challenge.

But techniques developed in recent years at Rice and by NIST scientist Ming Zheng to purify metallic nanotubes are beginning to change that. Rice graduate student Erik Hároz said recent experiments established "unambiguous evidence" that a process he and Kono are using called density gradient ultracentrifugation can enrich ensemble samples of armchairs. Taking things further, Zheng's method of DNA-based ion-exchange chromatography provides very small samples of ultrapure armchair nanotubes of a single chirality.

Rice and NIST are now looking at ways to combine the methods to get larger batches of a specific armchair chirality, Kono said.

If anyone can accomplish such a breakthrough, these labs can, he said. "Our team has the best possible armchair samples available due to these two methods, and we have recently made significant progress in increasing our understanding of the properties of armchair nanotubes, as described in this Nanoscale article."

Co-authors of the paper with Hároz, Hauge, Zheng and Kono are Juan Duque, who earned his doctorate at Rice and is now a research scientist at Los Alamos; Xiaomin Tu, a former postdoctoral researcher at NIST, now an intellectual property subject matter expert at Chevron; Angela Hight Walker, project leader in the Semiconductor and Dimensional Metrology Division at NIST; and Stephen Doorn, science partner leader in the Center for Integrated Nanotechnologies at Los Alamos. Kono is a professor of electrical and computer engineering and of physics and astronomy at Rice. Pasquali is a professor of chemical and biomolecular engineering and of chemistry.

The National Science Foundation, the Department of Energy, the Air Force Research Laboratories, Los Alamos National Laboratory, the Robert A. Welch Foundation, NASA and the World Class University Program at Sungkyunkwan University supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Richard E. Smalley Institute for Nanoscale Science and Technology:

Nano parfait a treat for scientists:

DNA-assisted dispersion and separation of carbon nanotubes:

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Laboratories

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Military

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Biomimetic photodetector 'sees' in color: Rice lab uses CMOS-compatible aluminum for on-chip color detection August 25th, 2014

Photonics/Optics/Lasers

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE