Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CRAIC Technologies Raman Spectral Surface Mapping™ Capability

Abstract:
CRAIC Technologies introduces Spectral Surface Mapping™ which allows automatic Raman spectral mapping with microscopic spatial resolution. 3D maps can be generated for Raman spectra quickly, easily and automatically.

CRAIC Technologies Raman Spectral Surface Mapping™ Capability

San Dimas, CA | Posted on February 2nd, 2013

CRAIC Technologies, the world leading innovator of microanalysis solutions, is proud to announce Raman Spectral Surface Mapping™ (S2M™) capabilities for its Apollo™ Raman microspectrometer line. S2M™ gives CRAIC Raman microspectrometer users the ability to map the Raman spectral variation of their samples with microscopic spatial resolution. Surface profiles can be created from Raman microspectral data from the CRAIC Apollo™ Raman microspectrometer. Apollo™ Raman microspectrometers can now created highly detailed spectral maps with micron scale resolution of Raman spectral features rapidly and automatically.

"CRAIC Technologies has worked to develop the Spectral Surface Mapping™ package because of customer requests. Adding Raman spectral mapping was an obvious step. Our customers wanted the ability to automatically survey and characterize the entire surface of samples by their Raman spectral characteristics. They also wanted a high spatial resolution" states Dr. Paul Martin, President of CRAIC Technologies. "S2M™ with the Apollo™ Raman microspectrometer does just that. It allows you to collect spectral data from thousands of points with a user defined mapping pattern. The user is then able to analyze the entire object by changes to its Raman spectral characteristics. The user can also pull up the full spectrum for each point."

Spectral Surface Mapping™ includes a software module to be used with CRAIC Technologies MINERVA-Raman™ microspectrometer control software. When employed with CRAIC Technologies Apollo™ Raman microspectrometers with programmable stages, S2M™ allows a user to automatically take spectral measurements with user-defined mapping patterns that reach to the limits of the stage itself. With the ability to measure up to a million points, high definition maps of the Raman spectral response of the sample may be generated. And because of the flexibility and power of the software, Raman spectral responses may even be collected and mapped when used with CRAIC Technologies Apollo™ Raman microspectrometers. S2M™ gives even more power to the scientist and engineer to study the entire surface of their samples at the highest level of detail.

####

About CRAIC Technologies, Inc.
CRAIC Technologies, Inc. is a global technology leader focused on innovations for microscopy and microspectroscopy in the ultraviolet, visible and near-infrared regions. CRAIC Technologies creates cutting-edge solutions, with the very best in customer support, by listening to our customers and implementing solutions that integrate operational excellence and technology expertise. CRAIC Technologies provides answers for customers in forensic sciences, biotechnology, semiconductor, geology, nanotechnology and materials science markets who demand quality, accuracy, precision, speed and the best in customer support.

For more information, please click here

Contacts:
CRAIC Technologies, Inc.
www.microspectra.com/

+1-310-573-8180

Copyright © CRAIC Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Imaging

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Announcements

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project