Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU physicists shine a light on particle assembly

NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight. ©iStockPhoto.com/RUJITOP
NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

©iStockPhoto.com/RUJITOP

Abstract:
New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

NYU physicists shine a light on particle assembly

New York, NY | Posted on February 1st, 2013

The method offers the potential to enhance the design of a range of industrial products, including the architecture of electronics.

The study's authors were: Jeremie Palacci and Stefano Sacanna, post-doctoral fellows in NYU's Center for Soft Matter Research who devised the research; David Pine and Paul Chaikin, professors in NYU's Department of Physics; and Asher Preska Steinberg, an undergraduate at Brandeis University who was a summer research program participant at NYU.

The work addresses a fundamental question in nature—what causes flocks and swarms to form and move in a particular way? Schools of fish, colony formations of bacteria, or flocks of birds are examples of how this occurs in living matter. In this inquiry, the researchers focused on making artificial systems exhibit similar activity. They used colloids—small particles suspended within a fluid medium—and discovered the basic organizing principles in natural flocking and how to use this to organize inorganic matter.

This exploration is a significant one. Colloidal dispersions are composed of such everyday items such as paint, milk, gelatin, glass, and porcelain. By better understanding driven colloidal self-organization, scientists have the potential to harness these particles and create new and enhanced materials—possibilities that are now largely untapped.

To explore this, the research team developed light-activated self-propelled particles, "swimmers," from the micro-meter-sized particles in solution. To separate the effects of swimming from simple thermal motion, they created a system where the particles turn on and off with application of blue light. With the light on, the self-propelled random swimmers collide and cluster. The light also triggers a slight chemical attraction and leads the clusters to crystallize and grow until the swimmers turn in separate directions and splinter the crystals. The "living" crystals continually form, swirl, and split. When the light is extinguished, the swimmers stop and the structures dissolve into individual diffusing colloidal particles.

Using the slight magnetism of the particles allows direction of the individual swimmers as well as the crystals. With control of light, magnets, and chemical attraction, these active particles bring biological organization to the materials world.

The research was supported by grants from the National Science Foundation, under the NSF Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341), the Department of Defense, under its Multidisciplinary Research Program of the University Research Initiative (W911NF-10-1-0518), and NASA under grant award NNX08AK04G.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Chip Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Discoveries

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Military

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Industrial

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Strategic Materials Conference 2018 Highlights “Materials Shaping the Future of Electronics” July 30th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project