Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU physicists shine a light on particle assembly

NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight. ©iStockPhoto.com/RUJITOP
NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

©iStockPhoto.com/RUJITOP

Abstract:
New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

NYU physicists shine a light on particle assembly

New York, NY | Posted on February 1st, 2013

The method offers the potential to enhance the design of a range of industrial products, including the architecture of electronics.

The study's authors were: Jeremie Palacci and Stefano Sacanna, post-doctoral fellows in NYU's Center for Soft Matter Research who devised the research; David Pine and Paul Chaikin, professors in NYU's Department of Physics; and Asher Preska Steinberg, an undergraduate at Brandeis University who was a summer research program participant at NYU.

The work addresses a fundamental question in nature—what causes flocks and swarms to form and move in a particular way? Schools of fish, colony formations of bacteria, or flocks of birds are examples of how this occurs in living matter. In this inquiry, the researchers focused on making artificial systems exhibit similar activity. They used colloids—small particles suspended within a fluid medium—and discovered the basic organizing principles in natural flocking and how to use this to organize inorganic matter.

This exploration is a significant one. Colloidal dispersions are composed of such everyday items such as paint, milk, gelatin, glass, and porcelain. By better understanding driven colloidal self-organization, scientists have the potential to harness these particles and create new and enhanced materials—possibilities that are now largely untapped.

To explore this, the research team developed light-activated self-propelled particles, "swimmers," from the micro-meter-sized particles in solution. To separate the effects of swimming from simple thermal motion, they created a system where the particles turn on and off with application of blue light. With the light on, the self-propelled random swimmers collide and cluster. The light also triggers a slight chemical attraction and leads the clusters to crystallize and grow until the swimmers turn in separate directions and splinter the crystals. The "living" crystals continually form, swirl, and split. When the light is extinguished, the swimmers stop and the structures dissolve into individual diffusing colloidal particles.

Using the slight magnetism of the particles allows direction of the individual swimmers as well as the crystals. With control of light, magnets, and chemical attraction, these active particles bring biological organization to the materials world.

The research was supported by grants from the National Science Foundation, under the NSF Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341), the Department of Defense, under its Multidisciplinary Research Program of the University Research Initiative (W911NF-10-1-0518), and NASA under grant award NNX08AK04G.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Industrial

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic