Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NYU physicists shine a light on particle assembly

NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight. ©iStockPhoto.com/RUJITOP
NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

©iStockPhoto.com/RUJITOP

Abstract:
New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

NYU physicists shine a light on particle assembly

New York, NY | Posted on February 1st, 2013

The method offers the potential to enhance the design of a range of industrial products, including the architecture of electronics.

The study's authors were: Jeremie Palacci and Stefano Sacanna, post-doctoral fellows in NYU's Center for Soft Matter Research who devised the research; David Pine and Paul Chaikin, professors in NYU's Department of Physics; and Asher Preska Steinberg, an undergraduate at Brandeis University who was a summer research program participant at NYU.

The work addresses a fundamental question in nature—what causes flocks and swarms to form and move in a particular way? Schools of fish, colony formations of bacteria, or flocks of birds are examples of how this occurs in living matter. In this inquiry, the researchers focused on making artificial systems exhibit similar activity. They used colloids—small particles suspended within a fluid medium—and discovered the basic organizing principles in natural flocking and how to use this to organize inorganic matter.

This exploration is a significant one. Colloidal dispersions are composed of such everyday items such as paint, milk, gelatin, glass, and porcelain. By better understanding driven colloidal self-organization, scientists have the potential to harness these particles and create new and enhanced materials—possibilities that are now largely untapped.

To explore this, the research team developed light-activated self-propelled particles, "swimmers," from the micro-meter-sized particles in solution. To separate the effects of swimming from simple thermal motion, they created a system where the particles turn on and off with application of blue light. With the light on, the self-propelled random swimmers collide and cluster. The light also triggers a slight chemical attraction and leads the clusters to crystallize and grow until the swimmers turn in separate directions and splinter the crystals. The "living" crystals continually form, swirl, and split. When the light is extinguished, the swimmers stop and the structures dissolve into individual diffusing colloidal particles.

Using the slight magnetism of the particles allows direction of the individual swimmers as well as the crystals. With control of light, magnets, and chemical attraction, these active particles bring biological organization to the materials world.

The research was supported by grants from the National Science Foundation, under the NSF Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341), the Department of Defense, under its Multidisciplinary Research Program of the University Research Initiative (W911NF-10-1-0518), and NASA under grant award NNX08AK04G.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project