Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU physicists shine a light on particle assembly

NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight. ©iStockPhoto.com/RUJITOP
NYU physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

©iStockPhoto.com/RUJITOP

Abstract:
New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and then assemble—much like birds flock and move together in flight.

NYU physicists shine a light on particle assembly

New York, NY | Posted on February 1st, 2013

The method offers the potential to enhance the design of a range of industrial products, including the architecture of electronics.

The study's authors were: Jeremie Palacci and Stefano Sacanna, post-doctoral fellows in NYU's Center for Soft Matter Research who devised the research; David Pine and Paul Chaikin, professors in NYU's Department of Physics; and Asher Preska Steinberg, an undergraduate at Brandeis University who was a summer research program participant at NYU.

The work addresses a fundamental question in nature—what causes flocks and swarms to form and move in a particular way? Schools of fish, colony formations of bacteria, or flocks of birds are examples of how this occurs in living matter. In this inquiry, the researchers focused on making artificial systems exhibit similar activity. They used colloids—small particles suspended within a fluid medium—and discovered the basic organizing principles in natural flocking and how to use this to organize inorganic matter.

This exploration is a significant one. Colloidal dispersions are composed of such everyday items such as paint, milk, gelatin, glass, and porcelain. By better understanding driven colloidal self-organization, scientists have the potential to harness these particles and create new and enhanced materials—possibilities that are now largely untapped.

To explore this, the research team developed light-activated self-propelled particles, "swimmers," from the micro-meter-sized particles in solution. To separate the effects of swimming from simple thermal motion, they created a system where the particles turn on and off with application of blue light. With the light on, the self-propelled random swimmers collide and cluster. The light also triggers a slight chemical attraction and leads the clusters to crystallize and grow until the swimmers turn in separate directions and splinter the crystals. The "living" crystals continually form, swirl, and split. When the light is extinguished, the swimmers stop and the structures dissolve into individual diffusing colloidal particles.

Using the slight magnetism of the particles allows direction of the individual swimmers as well as the crystals. With control of light, magnets, and chemical attraction, these active particles bring biological organization to the materials world.

The research was supported by grants from the National Science Foundation, under the NSF Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341), the Department of Defense, under its Multidisciplinary Research Program of the University Research Initiative (W911NF-10-1-0518), and NASA under grant award NNX08AK04G.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Chip Technology

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanometrics to Announce First Quarter Financial Results on May 1, 2018 April 10th, 2018

Self Assembly

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Discoveries

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Military

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

Flat gallium joins roster of new 2-D materials: Rice University, Indian Institute of Science introduce gallenene March 12th, 2018

Industrial

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project