Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The nanoplasmonics group of the Department of Physics: Professor Stefan Maier and team work on the burgeoning field of nanoplasmonics, which could have a major impact on business and consumer technology

PhD students Giuliana Di Martino and Yan Francescato
PhD students Giuliana Di Martino and Yan Francescato

Abstract:
Stefan Maier's nanoplasmonics group started five years ago with just one other member. It is now a 30-strong team which last year produced 40 publications, almost all in high impact journals, including Nature journals and Science. We met with Stefan and the group.

The nanoplasmonics group of the Department of Physics: Professor Stefan Maier and team work on the burgeoning field of nanoplasmonics, which could have a major impact on business and consumer technology

London, UK | Posted on January 31st, 2013

Many scientists work mostly with chemicals, others with cells, and some with metals. For Professor Stefan Maier (Physics) and his team their currency is light. They try to understand it at a fundamental level, capture it, channel it at the tiniest scale and use it to perform an array of useful technological functions.

Working in experimental physics is challenging to say the least. But the Maier group balances that with bouts of squash and generous helpings of tiramisu - leaving them refreshed and ready for the real work.

"Plasmonics is the study of how light interacts with metallic nanostructures", explains Dr Yannick Sonnefraud, the first and longest-serving member of Maier's group and now a research fellow.

"Light waves couple with the oscillating waves of electrons inside the metal," adds research fellow Dr Antonio Fernandez- Dominguez. "They interact to form a new entity that has the properties of the two - light waves and electron waves. It is this entity that we call a plasmon."

This is, in some ways, similar to what happens in a radio antenna. Radio waves create a current in the metal aerial, which is integrated with the electronics and converted into the sound we hear.

But scientists would really like to make an antenna to convert visible light into a plasmon. This could lead to a range of diverse applications such as extremely fast information processing devices for the telecommunications industry; high-density data storage; and super sensitive chemical detectors that could spot just a couple of molecules of explosive in a liquid sample. This is something that members of the group are busy working towards - though there are some challenges to overcome.

Dr Tyler Roschuk, who has been a post-doc in the group for three years, looks at ways to integrate photonic components such as fibre optics and laser diodes with much smaller microelectronic features.

"We could focus the light down with a nanoplasmonic antenna. Then instead of metal wires between electronic components, we would have plasmonic wires. This would lead to faster devices because multiple packets of information could be sent down the same wire at the same time, much like how several hundred telephone calls can be sent down the same fibre optic cable," he says.

Meanwhile postdoc Dr Heykel Aouani is trying to make nanoantennas that can handle a much broader range of wavelengths, which could lead to powerful sensors for biological applications and security.

"A liquid sample of interest would be wiped over a chip and light would be reflected off this and examined. The use of nanoantennas would indicate whether certain chemicals, such as TNT, are present in the sample. This technology could therefore be useful in airport security scanning in the future," he says.

Some of the PhD students enjoy the benefits of working across two different groups such as Krystallo Hadjicosti, who is co-supervised by Stefan and Dr Katya Shamonina (Electrical and Electronic Engineering).

"Working in this area requires knowledge and experience in both electronics and physics. Collaboration is essential to establish the theory and apply it. Besides, networking in science is very important and being able to meet people from both fields triggers new ideas," she says.

Her situation is not unique, however, and is indicative of the Maier group's philosophy on collaboration.

"Key to the success of our group is that we have been able to collaborate so widely," says Stefan who points to work they've done with Professors Sir John Pendry, Ortwin Hess, Lesley Cohen, and Drs Ned Ekins- Daukes and Paul Stavrinou in Physics, Professor Neil Alford in Materials and Katya in Electrical and Electronic Engineering, in addition to international collaborators.

But the group's success also owes a lot to its friendly environment. "We have a squash ladder tournament whilst Friday beers are also an important event in the group," says research fellow Dr Vincenzo Giannini. "Our members come from all over the world and we try to mix our knowledge."

"We sometimes compete to see who can make the best version of each other's national meals," adds PhD student Giuliana Di Martino. "Yannick made a very good tiramisu recently. But there's a few of us Italians in the group and we weren't going to go as far as admitting that a Frenchman knows how to make a better tiramisu than an Italian!"

As the group moves forward into 2013 there are plenty of exciting challenges to come. Two post docs in the group have recently been awarded Junior Research Fellowships and two alumni have gone on to professorships at overseas universities. It's probably fair to say that in the years to come, the group as a whole will continue to drive advances in the field of nanoplasmonics, which will have an increasing impact on business and consumer technology worldwide.

Photographs and editorial by Sam Tracey for Communications and Development

####

About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

For more information, please click here

Contacts:
Imperial College London
South Kensington Campus
London SW7 2AZ
tel: +44 (0)20 7589 5111

Copyright © Imperial College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Optical computing/ Photonic computing

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Rice scientists use light to probe acoustic tuning in gold nanodisks: Rice University experts demonstrate new method for optomechanical tuning May 7th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Photonics/Optics/Lasers

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project