Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The nanoplasmonics group of the Department of Physics: Professor Stefan Maier and team work on the burgeoning field of nanoplasmonics, which could have a major impact on business and consumer technology

PhD students Giuliana Di Martino and Yan Francescato
PhD students Giuliana Di Martino and Yan Francescato

Abstract:
Stefan Maier's nanoplasmonics group started five years ago with just one other member. It is now a 30-strong team which last year produced 40 publications, almost all in high impact journals, including Nature journals and Science. We met with Stefan and the group.

The nanoplasmonics group of the Department of Physics: Professor Stefan Maier and team work on the burgeoning field of nanoplasmonics, which could have a major impact on business and consumer technology

London, UK | Posted on January 31st, 2013

Many scientists work mostly with chemicals, others with cells, and some with metals. For Professor Stefan Maier (Physics) and his team their currency is light. They try to understand it at a fundamental level, capture it, channel it at the tiniest scale and use it to perform an array of useful technological functions.

Working in experimental physics is challenging to say the least. But the Maier group balances that with bouts of squash and generous helpings of tiramisu - leaving them refreshed and ready for the real work.

"Plasmonics is the study of how light interacts with metallic nanostructures", explains Dr Yannick Sonnefraud, the first and longest-serving member of Maier's group and now a research fellow.

"Light waves couple with the oscillating waves of electrons inside the metal," adds research fellow Dr Antonio Fernandez- Dominguez. "They interact to form a new entity that has the properties of the two - light waves and electron waves. It is this entity that we call a plasmon."

This is, in some ways, similar to what happens in a radio antenna. Radio waves create a current in the metal aerial, which is integrated with the electronics and converted into the sound we hear.

But scientists would really like to make an antenna to convert visible light into a plasmon. This could lead to a range of diverse applications such as extremely fast information processing devices for the telecommunications industry; high-density data storage; and super sensitive chemical detectors that could spot just a couple of molecules of explosive in a liquid sample. This is something that members of the group are busy working towards - though there are some challenges to overcome.

Dr Tyler Roschuk, who has been a post-doc in the group for three years, looks at ways to integrate photonic components such as fibre optics and laser diodes with much smaller microelectronic features.

"We could focus the light down with a nanoplasmonic antenna. Then instead of metal wires between electronic components, we would have plasmonic wires. This would lead to faster devices because multiple packets of information could be sent down the same wire at the same time, much like how several hundred telephone calls can be sent down the same fibre optic cable," he says.

Meanwhile postdoc Dr Heykel Aouani is trying to make nanoantennas that can handle a much broader range of wavelengths, which could lead to powerful sensors for biological applications and security.

"A liquid sample of interest would be wiped over a chip and light would be reflected off this and examined. The use of nanoantennas would indicate whether certain chemicals, such as TNT, are present in the sample. This technology could therefore be useful in airport security scanning in the future," he says.

Some of the PhD students enjoy the benefits of working across two different groups such as Krystallo Hadjicosti, who is co-supervised by Stefan and Dr Katya Shamonina (Electrical and Electronic Engineering).

"Working in this area requires knowledge and experience in both electronics and physics. Collaboration is essential to establish the theory and apply it. Besides, networking in science is very important and being able to meet people from both fields triggers new ideas," she says.

Her situation is not unique, however, and is indicative of the Maier group's philosophy on collaboration.

"Key to the success of our group is that we have been able to collaborate so widely," says Stefan who points to work they've done with Professors Sir John Pendry, Ortwin Hess, Lesley Cohen, and Drs Ned Ekins- Daukes and Paul Stavrinou in Physics, Professor Neil Alford in Materials and Katya in Electrical and Electronic Engineering, in addition to international collaborators.

But the group's success also owes a lot to its friendly environment. "We have a squash ladder tournament whilst Friday beers are also an important event in the group," says research fellow Dr Vincenzo Giannini. "Our members come from all over the world and we try to mix our knowledge."

"We sometimes compete to see who can make the best version of each other's national meals," adds PhD student Giuliana Di Martino. "Yannick made a very good tiramisu recently. But there's a few of us Italians in the group and we weren't going to go as far as admitting that a Frenchman knows how to make a better tiramisu than an Italian!"

As the group moves forward into 2013 there are plenty of exciting challenges to come. Two post docs in the group have recently been awarded Junior Research Fellowships and two alumni have gone on to professorships at overseas universities. It's probably fair to say that in the years to come, the group as a whole will continue to drive advances in the field of nanoplasmonics, which will have an increasing impact on business and consumer technology worldwide.

— Photographs and editorial by Sam Tracey for Communications and Development

####

About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

For more information, please click here

Contacts:
Imperial College London
South Kensington Campus
London SW7 2AZ
tel: +44 (0)20 7589 5111

Copyright © Imperial College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Optical Computing

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanosheets and nanowires April 1st, 2014

Unavoidable disorder used to build nanolaser March 25th, 2014

A mathematical equation that explains the behavior of nanofoams March 22nd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE