Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rutgers Physics Professors Find New Order in Quantum Electronic Material: May open door to new kinds of materials, magnets and superconductors

Credit: Nick Romanenko

Premala Chandra
Credit: Nick Romanenko

Premala Chandra

Abstract:
Two Rutgers physics professors have proposed an explanation for a new type of order, or symmetry, in an exotic material made with uranium - a theory that may one day lead to enhanced computer displays and data storage systems and more powerful superconducting magnets for medical imaging and levitating high-speed trains

Rutgers Physics Professors Find New Order in Quantum Electronic Material: May open door to new kinds of materials, magnets and superconductors

New Brunswick, NJ | Posted on January 31st, 2013

Their discovery, published in this week's issue of the journal Nature, has piqued the interest of scientists worldwide. It is one of the rare theory-only papers that this selective publication accepts. Typically the journal's papers describe results of laboratory experimentation.

Collaborating with the Rutgers professors was a postdoctoral researcher at Massachusetts Institute of Technology (MIT) who earned her doctorate at Rutgers.

"Scientists have seen this behavior for 25 years, but it has eluded explanation." said Piers Coleman, professor in the Department of Physics and Astronomy in the School of Arts and Sciences. When cooled to 17.5 degrees above absolute zero or lower (a bone-chilling minus 428 degrees Fahrenheit), the flow of electricity through this material changes subtly.

The material essentially acts like an electronic version of polarized sunglasses, he explains. Electrons behave like tiny magnets, and normally these magnets can point in any direction. But when they flow through this cooled material, they come out with their magnetic fields aligned with the material's main crystal axis.

This effect, claims Coleman, comes from a new type of hidden order, or symmetry, in this material's magnetic and electronic properties. Changes in order are what make liquid crystals, magnetic materials and superconductors work and perform useful functions.

"Our quest to understand new types of order is a vital part of understanding how materials can be developed to benefit the world around us," he said.

Similar discoveries have led to technologies such as liquid crystal displays, which are now ubiquitous in flat-screen TVs, computers and smart phones, although the scientists are quick to acknowledge that their theoretical discovery won't transform high-tech products overnight.

Coleman, along with Rutgers colleague Premala Chandra and MIT collaborator Rebecca Flint, describe what they call a "hidden order" in this compound of uranium, ruthenium and silicon. Uranium is commonly known for being nuclear reactor fuel or weapons material, but in this case physicists value it as a heavy metal with electrons that behave differently than those in common metals.

Recent experiments on the material at the National High Magnetic Field Laboratory at Los Alamos National Laboratory in New Mexico provided the three physicists with data to refine their discovery.

"We've dubbed our fundamental new order ‘hastatic' order, named after the Greek word for spear," said Chandra, also a professor in the Department of Physics and Astronomy. The name reflects the highly ordered properties of the material and its effect on aligning electrons that flow through it.

"This new category of order may open the world to new kinds of materials, magnets, superconductors and states of matter with properties yet unknown," she said. The scientists have predicted other instances where hastatic order may show up, and physicists are beginning to test for it.

The scientists' work was funded by the National Science Foundation and the Simons Foundation. Flint is a Simons Postdoctoral Fellow in physics at MIT.

####

For more information, please click here

Contacts:
Carl Blesch
732-932-7084 x616

Copyright © Rutgers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature article (subscription may be required):

Nature News and Views article (subscription may be required):

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Superconductivity

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Memory Technology

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Quantum nanoscience

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project