Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New semiconductor research may extend integrated circuit battery life tenfold: Early results using novel materials and processes achieves milestone toward low-power tunnel transistor electronics

Abstract:
Researchers at Rochester Institute of Technology, international semiconductor consortium SEMATECH and Texas State University have demonstrated that use of new methods and materials for building integrated circuits can reduce power—extending battery life to 10 times longer for mobile applications compared to conventional transistors.

New semiconductor research may extend integrated circuit battery life tenfold: Early results using novel materials and processes achieves milestone toward low-power tunnel transistor electronics

Rochester, NY | Posted on January 30th, 2013

The key to the breakthrough is a tunneling field effect transistor. Transistors are switches that control the movement of electrons through material to conduct the electrical currents needed to run circuits. Unlike standard transistors, which are like driving a car over a hill, the tunneling field effect transistor is more like tunneling through a hill, says Sean Rommel, associate professor of electrical and microelectronic engineering.

"The tunneling field effect transistors have not yet demonstrated a sufficiently large drive current to make it a practical replacement for current transistor technology," Rommel says, "but this work conclusively established the largest tunneling current ever experimentally demonstrated, answering a key question about the viability of tunneling field effect transistor technology."

Rommel worked with David Pawlik, Brian Romanczyk and Paul Thomas, three graduate students in the microelectronic engineering and microsystems engineering programs at RIT. Along with colleagues from SEMATECH and Texas State University, the team presented the breakthrough findings at the International Electron Devices Meeting in San Francisco this past December.

In order to accurately observe and quantify these current levels, a fabrication and testing procedure was performed at RIT. Pawlik developed a process to build and test vertical Esaki tunnel diodes smaller than 120 nanometers in diameter, Rommel explains. This procedure allowed the researchers to measure hundreds of diodes per sample. Because of the nanometer-scale devices tested, the researchers were able to experimentally observe currents substantially larger than any previously reported tunneling currents.

Esaki tunnel diodes, discovered in 1957 and the first quantum devices, were used to create a map showing output tunnel currents for a given set of material systems and parameters. For the first time, researchers have a single reference to which they can compare results from the micro- to the mega-ampere range, Rommel adds.

"This work may be used by others in designing higher performance tunneling field effect transistors which may enable future low power integrated circuits for your mobile device," he says.

The team's findings in the area of developing high performance, low-power electronic devices are also detailed in the paper, "Benchmarking and Improving III-V Esaki Diode Performance with a Record 2.2 MA cm2 Current Density to Enhance Tunneling Field-Effect Transistor Drive Current." The National Science Foundation, SEMATECH and RIT's Office of the Vice President of Research sponsor the work.

"SEMATECH, RIT and Texas State have made a significant breakthrough in the basic materials for the sub 10 nm node with this work," said Paul Kirsch, director of SEMATECH's Front End Processes. "The research that was presented at the International Electron Devices Meeting on III-V Esaki tunnel diode performance resolves fundamental questions on the viability of tunneling field effect transistors and provides a practical basis for low-voltage transistor technologies."

####

For more information, please click here

Contacts:
Michelle Cometa

585-475-4954

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Discoveries

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Announcements

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Research partnerships

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic