Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New semiconductor research may extend integrated circuit battery life tenfold: Early results using novel materials and processes achieves milestone toward low-power tunnel transistor electronics

Abstract:
Researchers at Rochester Institute of Technology, international semiconductor consortium SEMATECH and Texas State University have demonstrated that use of new methods and materials for building integrated circuits can reduce power—extending battery life to 10 times longer for mobile applications compared to conventional transistors.

New semiconductor research may extend integrated circuit battery life tenfold: Early results using novel materials and processes achieves milestone toward low-power tunnel transistor electronics

Rochester, NY | Posted on January 30th, 2013

The key to the breakthrough is a tunneling field effect transistor. Transistors are switches that control the movement of electrons through material to conduct the electrical currents needed to run circuits. Unlike standard transistors, which are like driving a car over a hill, the tunneling field effect transistor is more like tunneling through a hill, says Sean Rommel, associate professor of electrical and microelectronic engineering.

"The tunneling field effect transistors have not yet demonstrated a sufficiently large drive current to make it a practical replacement for current transistor technology," Rommel says, "but this work conclusively established the largest tunneling current ever experimentally demonstrated, answering a key question about the viability of tunneling field effect transistor technology."

Rommel worked with David Pawlik, Brian Romanczyk and Paul Thomas, three graduate students in the microelectronic engineering and microsystems engineering programs at RIT. Along with colleagues from SEMATECH and Texas State University, the team presented the breakthrough findings at the International Electron Devices Meeting in San Francisco this past December.

In order to accurately observe and quantify these current levels, a fabrication and testing procedure was performed at RIT. Pawlik developed a process to build and test vertical Esaki tunnel diodes smaller than 120 nanometers in diameter, Rommel explains. This procedure allowed the researchers to measure hundreds of diodes per sample. Because of the nanometer-scale devices tested, the researchers were able to experimentally observe currents substantially larger than any previously reported tunneling currents.

Esaki tunnel diodes, discovered in 1957 and the first quantum devices, were used to create a map showing output tunnel currents for a given set of material systems and parameters. For the first time, researchers have a single reference to which they can compare results from the micro- to the mega-ampere range, Rommel adds.

"This work may be used by others in designing higher performance tunneling field effect transistors which may enable future low power integrated circuits for your mobile device," he says.

The team's findings in the area of developing high performance, low-power electronic devices are also detailed in the paper, "Benchmarking and Improving III-V Esaki Diode Performance with a Record 2.2 MA cm2 Current Density to Enhance Tunneling Field-Effect Transistor Drive Current." The National Science Foundation, SEMATECH and RIT's Office of the Vice President of Research sponsor the work.

"SEMATECH, RIT and Texas State have made a significant breakthrough in the basic materials for the sub 10 nm node with this work," said Paul Kirsch, director of SEMATECH's Front End Processes. "The research that was presented at the International Electron Devices Meeting on III-V Esaki tunnel diode performance resolves fundamental questions on the viability of tunneling field effect transistors and provides a practical basis for low-voltage transistor technologies."

####

For more information, please click here

Contacts:
Michelle Cometa

585-475-4954

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Chip Technology

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Discoveries

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Announcements

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Tweaking electrolyte makes better lithium-metal batteries: A pinch of electrolyte additive gives rechargeable battery stability, longer life March 2nd, 2017

Research partnerships

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project