Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Various Types of Silver Nanoparticles Show Different Reactions against Bacteria

Abstract:
Researchers from Islamic Azad University and Tehran University of Medical Sciences in association with researchers from the University of California discovered various effects of different types of silver nanoparticles on bacteria and their anti-bacterial properties.

Various Types of Silver Nanoparticles Show Different Reactions against Bacteria

Tehran, Iran | Posted on January 30th, 2013

Anti-microbial and antibacterial effects of silver are known to everyone. However, different papers have presented contradictory results about the antibacterial effects of silver nanoparticles, including the potential toxicity of silver nanoparticles when they interact with various types of bacteria.

It is well known at the moment that the surfaces of nanomaterials are immediately covered with protein when they are in contact with a live tissue. The formation of protein corona in the surface of nanoparticles creates a new biological identity in biological media, which determines cellular/tissue responses.

This research investigated the anti-microbial properties of silver nanostructures with different shapes against the three types of bacteria including E. coli, bacillus subtilis, staphylococcus aureus, and the results confirmed the important effect of bacteria on the performance of nanoparticles. The toxicity of similar amount of each of the nanoparticles types was studied in each bacterium, and the results showed that each bacterium gave a different response to each of the nanoparticles. The researchers claim that the significant differences in bacteria membrane composition are the cause of various toxicity results.

Protein corona composition was finally studied in details on the surface of nanoparticles. Results showed that proteins have much more tendency to join the sharp edges in nanoparticles surface rather than to join the flat surfaces. In addition, the both proteins (with high molecular weight and low molecular weight) have more tendencies towards sharp surfaces rather than sphere and wire.

Results of the research have been published in May 2012 in Chemical Research in Toxicology, vol. 25, issue 6. For more information about the details of the research, visit the full paper on pages 1231-1242 of the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project