Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Tracking Analysis for vaccine characterization at Lomonosov Moscow State University

Dr Nikolai Nikitin with his Junior Researcher, Ekaterina Trifonova
with the NS500 system in the Department of Virology, MSU.
Dr Nikolai Nikitin with his Junior Researcher, Ekaterina Trifonova with the NS500 system in the Department of Virology, MSU.

Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is used for vaccine characterization and standardization in the virology research group of Dr Nikolai Nikitin at Lomonosov Moscow State University.

Nanoparticle Tracking Analysis for vaccine characterization at Lomonosov Moscow State University

Salisbury, UK | Posted on January 29th, 2013

The MSU Department of Virology headed by Professor Joseph Atabekov is studying the in vitro assembly of compositions, consisting of artificial plant virus particles and antigens, potentially attractive for vaccines development. Artificial plant virus particles are spherical particles (SPs) generated by thermal denaturation and structural remodelling of helical plant tobacco mosaic virus, a rod-shaped virus with a diameter of 18 nm and a modal length of 300 nm. It has been found that upon thermal denaturation of TMV, viral RNA is released and becomes degraded whereas viral coated protein is assembled into spherical particles. The size of SPs depends on the initial TMV concentration and particles from 50 to 800 nm may be obtained. The group of Professor Olga Karpova has shown that SPs based on TMV are stable and may adsorb a diversity of proteins. Thus, SPs represent a new type of biogenic nanoplatform attractive for binding antigens and antigenic determinants of different pathogens.

Describing the choice of NTA for this work, Dr Nikitin says "It permits us to analyze and control the size, state of aggregation and concentration of artificial plant virus particles and small spherical plant and animal viruses. Furthermore, NTA allows us to see the formation of immunogenic complexes (candidate vaccines) by using the indirect immunofluorescence or immunogold staining methods. The technique provides us with the opportunity to obtain simultaneous information concerning nanoparticle size, state of aggregation, concentration and antigenic specificity in liquid. This is particularly important for vaccine characterization and standardization."

Continuing on the benefits of NTA over other characterization methods, Dr Nikitin says "Previously, we had used transmission electron microscopy (TEM) and dynamic light scattering (DLS) for sizing SPs, isometric viruses and virus-like particles. To detect the formation of immunogenic complexes (candidate vaccines) we use immunogold TEM and immunofluorescence microscopy. For us, the main advantage of NTA over these microscopic methods is that there is no need to fix and dry the object on a supporting film which could lead to morphological deformations and aggregation of nanoparticles. NTA provides the means for analysis of samples in liquid in real-time. DLS is also available for measuring the size of nanoparticles in liquids. However, particle aggregation and any contamination of samples will lead to incorrect results. The correct size of the particles can be obtained by DLS only in the absence of aggregation and polydispersity of sample. In addition, DLS cannot estimate the number of particles per unit volume and cannot detect the retention of particles antigenic properties. NTA does not have these problems as it makes measurements particle by particle."

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 600+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project