Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice technique points toward 2-D devices: Researchers create fine patterns that combine single-atom-thick graphene, boron nitride

An atom-thick Rice Owl (scale bar equals 100 micrometers) was created to show the ability to make fine patterns in hybrid graphene/hexagonal boron nitride (hBN). In this image, the owl is hBN and the lighter material around it is graphene. The ability to pattern a conductor (graphene) and insulator (hBN) into a single layer may advance the ability to shrink electronic devices. (Credit: Zheng Liu/Rice University)
An atom-thick Rice Owl (scale bar equals 100 micrometers) was created to show the ability to make fine patterns in hybrid graphene/hexagonal boron nitride (hBN). In this image, the owl is hBN and the lighter material around it is graphene. The ability to pattern a conductor (graphene) and insulator (hBN) into a single layer may advance the ability to shrink electronic devices.

(Credit: Zheng Liu/Rice University)

Abstract:
Rice University scientists have taken an important step toward the creation of two-dimensional electronics with a process to make patterns in atom-thick layers that combine a conductor and an insulator.

Rice technique points toward 2-D devices: Researchers create fine patterns that combine single-atom-thick graphene, boron nitride

Houston, TX | Posted on January 27th, 2013

The materials at play - graphene and hexagonal boron nitride - have been merged into sheets and built into a variety of patterns at nanoscale dimensions.

Rice introduced a technique to stitch the identically structured materials together nearly three years ago. Since then, the idea has received a lot of attention from researchers interested in the prospect of building 2-D, atomic-layer circuits, said Rice materials scientist Pulickel Ajayan. He is one of the authors of the new work that appears this week in Nature Nanotechnology. In particular, Ajayan noted that Cornell University scientists reported an advance late last year on the art of making atomic-layer heterostructures through sequential growth schemes.

This week's contribution by Rice offers manufacturers the possibility of shrinking electronic devices into even smaller packages. While Rice's technical capabilities limited features to a resolution of about 100 nanometers, the only real limits are those defined by modern lithographic techniques, according to the researchers. (A nanometer is one-billionth of a meter.)

"It should be possible to make fully functional devices with circuits 30, even 20 nanometers wide, all in two dimensions," said Rice researcher Jun Lou, a co-author of the new paper. That would make circuits on about the same scale as in current semiconductor fabrication, he said.

Graphene has been touted as a wonder material since its discovery in the last decade. Even at one atom thick, the hexagonal array of carbon atoms has proven its potential as a fascinating electronic material. But to build a working device, conductors alone will not do. Graphene-based electronics require similar, compatible 2-D materials for other components, and researchers have found hexagonal boron nitride (h-BN) works nicely as an insulator.

H-BN looks like graphene, with the same chicken-wire atomic array. The earlier work at Rice showed that merging graphene and h-BN via chemical vapor deposition (CVD) created sheets with pools of the two that afforded some control of the material's electronic properties. Ajayan said at the time that the creation offered "a great playground for materials scientists."

He has since concluded that the area of two-dimensional materials beyond graphene "has grown significantly and will play out as one of the key exciting materials in the near future."

His prediction bears fruit in the new work, in which finely detailed patterns of graphene are laced into gaps created in sheets of h-BN. Combs, bars, concentric rings and even microscopic Rice Owls were laid down through a lithographic process. The interface between elements, seen clearly in scanning transmission electron microscope images taken at Oak Ridge National Laboratories, shows a razor-sharp transition from graphene to h-BN along a subnanometer line.

"This is not a simple quilt," Lou said. "It's very precisely engineered. We can control the domain sizes and the domain shapes, both of which are necessary to make electronic devices."

The new technique also began with CVD. Lead author Zheng Liu, a Rice research scientist, and his colleagues first laid down a sheet of h-BN. Laser-cut photoresistant masks were placed over the h-BN, and exposed material was etched away with argon gas. (A focused ion beam system was later used to create even finer patterns, down to 100-nanometer resolution, without masks.) After the masks were washed away, graphene was grown via CVD in the open spaces, where it bonded edge-to-edge with the h-BN. The hybrid layer could then be picked up and placed on any substrate.

While there's much work ahead to characterize the atomic bonds where graphene and h-BN domains meet and to analyze potential defects along the boundaries, Liu's electrical measurements proved the components' qualities remain intact.

"One important thing Zheng showed is that even by doing all kinds of growth, then etching, then regrowth, the intrinsic properties of these two materials are not affected," Lou said. "Insulators stay insulators; they're not doped by the carbon. And the graphene still looks very good. That's important, because we want to be sure what we're growing is exactly what we want."

Liu said the next step is to place a third element, a semiconductor, into the 2-D fabric. "We're trying very hard to integrate this into the platform," he said. "If we can do that, we can build truly integrated in-plane devices." That would give new options to manufacturers toying with the idea of flexible electronics, he said.

"The contribution of this paper is to demonstrate the general process," Lou added. "It's robust, it's repeatable and it creates materials with very nice properties and with dimensions that are at the limit of what is possible."

Co-authors of the paper are graduate students Lulu Ma, Gang Shi, Yongji Gong, Ken Hackenberg, Sidong Lei and Jiangnan Zhang; Aydin Babakhani, an assistant professor of electrical and computer engineering; and Robert Vajtai, a faculty fellow in mechanical engineering and materials science, all at Rice; Wu Zhou, a research associate at Vanderbilt University and Wigner Fellow at Oak Ridge National Laboratory; Xuebei Yang, a former research assistant at Rice, now at Agilent Technologies; Jingjiang Yu, a scientist at Agilent Technologies; and Juan-Carlos Idrobo, a research professor of physics at Vanderbilt and a guest scientist at Oak Ridge. Lou is an associate professor of mechanical engineering and materials science. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice.

The work was supported by U.S. Army Research Office and U.S. Office of Naval Research Multidisciplinary University Research Initiative grants; the Nanoelectronics Research Corp; a U.S.-Japan Cooperative Research and Education in Terahertz grant; the Welch Foundation; the National Science Foundation; and Oak Ridge National Laboratory's Shared Research Equipment User Program, sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRice.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth

713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Lou Group:

Ajayan Group:

Graphene and boron nitride lateral heterostructures for atomically thin circuitry:

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Graphene

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Graphenea sales more than double in 2014 January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Laboratories

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Research partnerships

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE