Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > INRS develops a nanohybrid with remarkable properties using a new laser-plasma process: Towards a new generation of optoelectronic nanomaterials

Abstract:
By achieving the synthesis of a novel nanohybrid structure by means of the pulsed laser ablation (PLA) technique, Professor My Ali El Khakani and his team paved the way for a new generation of optoelectronic materials. The combination of carbon nanotubes and lead sulfide (PbS) nanoparticles was performed using an effective and relatively simple process that offers considerable latitude for creating other nanohybrids for a variety of applications. The INRS Énergie Matériaux Télécommunications Research Centre researcher's work, published in the renowned journal Advanced Materials, presents very promising prospects for the development of third-generation solar devices, fast photodetectors, and optoelectronic switches.

INRS develops a nanohybrid with remarkable properties using a new laser-plasma process: Towards a new generation of optoelectronic nanomaterials

Montreal, Canada | Posted on January 25th, 2013

In recent years, research on the photoelectronic properties of semiconductor nanoparticles, such as PbS, has been growing. The coupling of these nanoparticles with carbon nanotubes is a promising strategy for effectively generating photocurrent. The synthesis methods used by other research teams had significant limitations. "When chemically synthesizing nanohybrids, researchers used ligands, which prevented nanoparticle agglomeration, on one hand, but significantly affected the charge transfer dynamics from nanoparticles to nanotubes," said Professor El Khakani. Ligands reduce photoresponse efficiency and increase the reaction time—two effects that were not observed in nanohybrids produced by PLA since PbS is in direct atomic contact with the nanotubes' surafce.

"At the beginning, we didn't know if the nanohybrids would form in such a way as to enable their effective use for photodetection," said Ibrahima Ka, an INRS doctoral student working under the supervision of Professor El Khakani and co-supervised by Professor Dongling Ma. "By optimizing our approach, we developed nanohybrids whose photoactivity can be almost tailored at will." By integrating the new nanohybrid material into functional photoconductive devices, the researchers were pleased to demonstrate its strong photoresponse, which overpasses the results obtained by other methods. Thus, they have been able to achieve photoresponse values as high as 670% at 633 nm and 1350% at 405 nm under conditions where other nanohybrids did not exceed 37%. Furthermore, when the material is illuminated by a laser, the photocurrent response time is 1,000 to 100,000 times faster than those reported to date for other nanohybrids.

The PLA synthesis process produces very pure nanostructures and provides greater control over nanohybrid characteristics. Professor El Khakani's results demonstrate the enormous potential of these carbon nanotubes with PbS quantum dots.

Source: Stéphanie Thibault, Communications Advisor

####

About INRS
Institut national de recherche scientifique (INRS) is research intensive university which offers graduate level training. It ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally, even as it plays a key role in the development of concrete solutions to the problems faced by our society.

About this publication

The article entitled "Pulsed Laser Ablation based Direct Synthesis of Single-Wall Carbon Nanotube/PbS Quantum Dot Nanohybrids Exhibiting Strong, Spectrally Wide and Fast Photoresponse" was published in the journal Advanced Materials on December 11, 2012, (Vol. 24, pp. 6289) and selected for the journal's frontispiece. The research of My Ali El Khakani, a professor and researcher at INRS's Énergie Matériaux Télécommunications Research Centre, was made possible by the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec Nature and Technology fund, as well as support from Plasma-Québec's strategic network and Nano-Québec.

For more information, please click here

Contacts:
Stéphanie Thibault
Communications Advisor
Communications and Public Affairs Department

450-687-5010 x8865

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Optical computing/Photonic computing

Researchers find new way to control light with electric fields May 25th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Researchers develop transistors that can switch between two stable energy states May 9th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Sensors

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Quantum Dots/Rods

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Photonics/Optics/Lasers

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project