Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > INRS develops a nanohybrid with remarkable properties using a new laser-plasma process: Towards a new generation of optoelectronic nanomaterials

Abstract:
By achieving the synthesis of a novel nanohybrid structure by means of the pulsed laser ablation (PLA) technique, Professor My Ali El Khakani and his team paved the way for a new generation of optoelectronic materials. The combination of carbon nanotubes and lead sulfide (PbS) nanoparticles was performed using an effective and relatively simple process that offers considerable latitude for creating other nanohybrids for a variety of applications. The INRS Énergie Matériaux Télécommunications Research Centre researcher's work, published in the renowned journal Advanced Materials, presents very promising prospects for the development of third-generation solar devices, fast photodetectors, and optoelectronic switches.

INRS develops a nanohybrid with remarkable properties using a new laser-plasma process: Towards a new generation of optoelectronic nanomaterials

Montreal, Canada | Posted on January 25th, 2013

In recent years, research on the photoelectronic properties of semiconductor nanoparticles, such as PbS, has been growing. The coupling of these nanoparticles with carbon nanotubes is a promising strategy for effectively generating photocurrent. The synthesis methods used by other research teams had significant limitations. "When chemically synthesizing nanohybrids, researchers used ligands, which prevented nanoparticle agglomeration, on one hand, but significantly affected the charge transfer dynamics from nanoparticles to nanotubes," said Professor El Khakani. Ligands reduce photoresponse efficiency and increase the reaction time—two effects that were not observed in nanohybrids produced by PLA since PbS is in direct atomic contact with the nanotubes' surafce.

"At the beginning, we didn't know if the nanohybrids would form in such a way as to enable their effective use for photodetection," said Ibrahima Ka, an INRS doctoral student working under the supervision of Professor El Khakani and co-supervised by Professor Dongling Ma. "By optimizing our approach, we developed nanohybrids whose photoactivity can be almost tailored at will." By integrating the new nanohybrid material into functional photoconductive devices, the researchers were pleased to demonstrate its strong photoresponse, which overpasses the results obtained by other methods. Thus, they have been able to achieve photoresponse values as high as 670% at 633 nm and 1350% at 405 nm under conditions where other nanohybrids did not exceed 37%. Furthermore, when the material is illuminated by a laser, the photocurrent response time is 1,000 to 100,000 times faster than those reported to date for other nanohybrids.

The PLA synthesis process produces very pure nanostructures and provides greater control over nanohybrid characteristics. Professor El Khakani's results demonstrate the enormous potential of these carbon nanotubes with PbS quantum dots.

Source: Stéphanie Thibault, Communications Advisor

####

About INRS
Institut national de recherche scientifique (INRS) is research intensive university which offers graduate level training. It ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally, even as it plays a key role in the development of concrete solutions to the problems faced by our society.

About this publication

The article entitled "Pulsed Laser Ablation based Direct Synthesis of Single-Wall Carbon Nanotube/PbS Quantum Dot Nanohybrids Exhibiting Strong, Spectrally Wide and Fast Photoresponse" was published in the journal Advanced Materials on December 11, 2012, (Vol. 24, pp. 6289) and selected for the journal's frontispiece. The research of My Ali El Khakani, a professor and researcher at INRS's Énergie Matériaux Télécommunications Research Centre, was made possible by the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec Nature and Technology fund, as well as support from Plasma-Québec's strategic network and Nano-Québec.

For more information, please click here

Contacts:
Stéphanie Thibault
Communications Advisor
Communications and Public Affairs Department

450-687-5010 x8865

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanotubes/Buckyballs/Fullerenes

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Optical computing/Photonic computing

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

Sensors

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Quantum Dots/Rods

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project