Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL research paves way for larger, safer lithium ion batteries

ORNL researchers developed a nanoporous solid electrolyte (bottom left and in detail on right) from a solvated precursor (top left). The material conducts ions 1,000 times faster than its natural bulk form and enables more energy-dense lithium ion batteries.
ORNL researchers developed a nanoporous solid electrolyte (bottom left and in detail on right) from a solvated precursor (top left). The material conducts ions 1,000 times faster than its natural bulk form and enables more energy-dense lithium ion batteries.

Abstract:
Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the first high-performance, nanostructured solid electrolyte for more energy-dense lithium ion batteries.

ORNL research paves way for larger, safer lithium ion batteries

Oak Ridge, TN | Posted on January 25th, 2013

Today's lithium-ion batteries rely on a liquid electrolyte, the material that conducts ions between the negatively charged anode and positive cathode. But liquid electrolytes often entail safety issues because of their flammability, especially as researchers try to pack more energy in a smaller battery volume. Building batteries with a solid electrolyte, as ORNL researchers have demonstrated, could overcome these safety concerns and size constraints.

"To make a safer, lightweight battery, we need the design at the beginning to have safety in mind," said ORNL's Chengdu Liang, who led the newly published study in the Journal of the American Chemical Society. "We started with a conventional material that is highly stable in a battery system - in particular one that is compatible with a lithium metal anode."

The ability to use pure lithium metal as an anode could ultimately yield batteries five to 10 times more powerful than current versions, which employ carbon based anodes.

"Cycling highly reactive lithium metal in flammable organic electrolytes causes serious safety concerns," Liang said. "A solid electrolyte enables the lithium metal to cycle well, with highly enhanced safety."

The ORNL team developed its solid electrolyte by manipulating a material called lithium thiophosphate so that it could conduct ions 1,000 times faster than its natural bulk form. The researchers used a chemical process called nanostructuring, which alters the structure of the crystals that make up the material.

"Think about it in terms of a big crystal of quartz vs. very fine beach sand," said coauthor Adam Rondinone. "You can have the same total volume of material, but it's broken up into very small particles that are packed together. It's made of the same atoms in roughly the same proportions, but at the nanoscale the structure is different. And now this solid material conducts lithium ions at a much greater rate than the original large crystal."

The researchers are continuing to test lab scale battery cells, and a patent on the team's invention is pending.

"We use a room-temperature, solution-based reaction that we believe can be easily scaled up," Rondinone said. "It's an energy-efficient way to make large amounts of this material."

For information about industry collaboration opportunities, please visit the ORNL Partnerships website at www.ornl.gov/adm/partnerships/index.shtml.

The study is published as "Anomalous High Ionic Conductivity of Nanoporous -Li3PS4," and its ORNL coauthors are Zengcai Liu, Wujun Fu, Andrew Payzant, Xiang Yu, Zili Wu, Nancy Dudney, Jim Kiggans, Kunlun Hong, Adam Rondinone and Chengdu Liang. The work was sponsored by the Division of Materials Sciences and Engineering in DOE's Office of Science.

The materials synthesis and characterization were supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Oak Ridge National Laboratory
ORNL is a multiprogram science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global security, and in doing so create economic opportunity for the nation.

For more information, please click here

Contacts:
Morgan McCorkle

865-574-7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Discoveries

Stretchy supercapacitors power wearable electronics August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Announcements

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic