Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Some carbon nanotubes deplete beneficial microbes in certain soils

Ron Turco found that raw, non-functionalized, single-wall carbon nanotubes damage active microbiology in low-organic soils. (Purdue Agricultural Communication photo/Tom Campbell)
Ron Turco found that raw, non-functionalized, single-wall carbon nanotubes damage active microbiology in low-organic soils.

(Purdue Agricultural Communication photo/Tom Campbell)

Abstract:
Response of Soil Microorganisms to As-Produced and Functionalized Single-Wall Carbon Nanotubes (SWNTs)

Zhonghua Tong, Marianne Bischoff, Loring F. Nies, Phillip Myer, Bruce Applegate, and Ronald F. Turco

The use of single-wall carbon nanotubes (SWNTs) in manufacturing and biomedical applications is increasing at a rapid rate; however, data on the effects of a potential environmental release of the materials remain sparse. In this study, soils with either low or high organic matter contents as well as pure cultures of E. coli are challenged with either raw as-produced SWNTs (AP-SWNTs) or SWNTs functionalized with either polyethyleneglycol (PEG-SWNTs) or m-polyaminobenzene sulfonic acid (PABS-SWNTs). To mimic chronic exposure, the soil systems were challenged weekly for six weeks; microbial activities and community structures for both the prokaryote and eukaryote community were evaluated. Results show that repeated applications of AP-SWNTs can affect microbial community structures and induce minor changes in soil metabolic activity in the low organic matter systems. Toxicity of the three types of SWNTs was also assessed in liquid cultures using a bioluminescent E. coli-O157:H7 strain. Although decreases in light were detected in all treated samples, low light recovery following glucose addition in AP-SWNTs treatment and light absorption property of SWNTs particles suggest that AP-SWNTs suppressed metabolic activity of the E. coli, whereas the two functionalized SWNTs are less toxic. The metals released from the raw forms of SWNTs would not play a role in the effects seen in soil or the pure culture. We suggest that sorption to soil organic matter plays a controlling role in the soil microbiological responses to these nanomaterials.

Some carbon nanotubes deplete beneficial microbes in certain soils

West Lafayette, IN | Posted on January 24th, 2013

Some types of carbon nanotubes used for strengthening plastics and other materials may have an adverse effect on soil microbiology and soil microbial processes, a Purdue University study shows.

Specifically, these raw, non-functionalized single-walled carbon nanotubes were shown to damage the active microbiology in low-organic soil. Ron Turco, a professor of agronomy, said many of the bacteria affected could be involved in carbon and nitrogen cycling, which are critical processes to ensure a fully functional soil.

"There appears to be more negative potential on the active microbial population than we thought," said Turco, whose findings were published in the journal Environmental Science & Technology. "The as-produced materials could be a negative environmental situation if they are released into low-organic soils that could not absorb them."

Functionalized carbon nanotubes have modifications that create chemical or biological changes to the nanotubes. They're often used in medicines, and Turco's research showed they had no effect in high-organic or low-organic soils.

Non-functionalized single-walled nanotubes - those lacking intentional surface alterations - are being added to a variety of products during manufacturing because they can strengthen the material without adding much weight. Nanotubes contained in manufacturing waste products may find their way into wastewater treatment plants and bio-solids that result from water purification. Those bio-solids cannot be released into water, so they are often discarded by spreading on land, adding critically needed plant nutrients to soil.

"Land application of biosolids is standard procedure now," Turco said. "If any of that contains nanotubes, that could be a problem."

Single-walled nanotubes also didn't affect microbes in high-organic soils, Turco said, likely because organic materials are highly reactive. Organic materials may have reacted with the nanotubes, leaving them unable to affect microbes.

"We want to alert people to the fact that if you're going to apply these as part of a land-treatment program, you may want to focus on high-organic matter soils," he said.

It's also possible, though much less likely, that nanotubes could contaminate soil through accidental spills during a delivery, Turco said.

Next, Turco said he would look at the effects on plants and soils from other nanomaterials and nanometals that are being more widely used in products for different properties they convey, such as nanosilver for its disinfecting properties and nanoindium, which is used in electronics.

The National Science Foundation and the U.S. Environmental Protection Agency funded the research.

####

For more information, please click here

Contacts:
Writer:
Brian Wallheimer
765-496-2050


Source:
Ron Turco
765-494-8077

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Food/Agriculture/Supplements

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project