Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rare earth oxides make water-repellent surfaces that last: Ceramic forms of hydrophobic materials could be far more durable than existing coatings or surface treatments

MIT postdoc Gisele Azimi, left, displays three of the 13 different ceramic disks made from oxides of the rare earth elements, with associate professor Kripa Varanasi. Behind them is the furnace used to convert the powdered oxides into solid ceramic form.
Photo: David Castro-Olmedo/MIT
MIT postdoc Gisele Azimi, left, displays three of the 13 different ceramic disks made from oxides of the rare earth elements, with associate professor Kripa Varanasi. Behind them is the furnace used to convert the powdered oxides into solid ceramic form.

Photo: David Castro-Olmedo/MIT

Abstract:
Water-shedding surfaces that are robust in harsh environments could have broad applications in many industries including energy, water, transportation, construction and medicine. For example, condensation of water is a crucial part of many industrial processes, and condensers are found in most electric power plants and in desalination plants.

Rare earth oxides make water-repellent surfaces that last: Ceramic forms of hydrophobic materials could be far more durable than existing coatings or surface treatments

Cambridge, MA | Posted on January 23rd, 2013

Hydrophobic materials — ones that prevent water from spreading over a surface, instead causing it to form droplets that easily fall away — can greatly enhance the efficiency of this process. But these materials have one major problem: Most employ thin polymer coatings that degrade when heated, and can easily be destroyed by wear.

MIT researchers have now come up with a new class of hydrophobic ceramics that can overcome these problems. These ceramic materials are highly hydrophobic, but are also durable in the face of extreme temperatures and rough treatment.

The work, by mechanical engineering postdoc Gisele Azimi and Associate Professor Kripa Varanasi, along with two graduate students and another postdoc, is described this week in the journal Nature Materials. Durability has always been a challenge for hydrophobic materials, Varanasi says — a challenge he says his team has now solved.

Ceramics are highly resistant to extreme temperatures, but they tend to be hydrophilic (water-attracting) rather than hydrophobic. The MIT team decided to try making ceramics out of a series of elements whose unique electronic structure might render the materials hydrophobic: the so-called rare earth metals, which are also known as the lanthanide series on the periodic table.

Since all of the rare earth metals have similar physico-chemical properties, the team expected that their oxides would behave uniformly in their interactions with water. "We thought they should all have similar properties for wetting, so we said, ‘Let's do a systematic study of the whole series,'" says Varanasi, who is the Doherty Associate Professor of Ocean Utilization.

To test this hypothesis, they used powder oxides of 13 of the 14 members of that series (excluding one rare earth metal that is radioactive) and made pellets by compacting and heating them to nearly their melting point in order to fuse them into solid, ceramic form — a process called sintering.

Sure enough, when tested, all 13 of the rare earth oxide ceramics did display strong hydrophobic properties, as predicted. "We showed, for the first time, that there are ceramics that are intrinsically hydrophobic," Varanasi says.

These rare earth oxides "are exotic materials, and interestingly their wetting properties have not been studied," he says, adding that many of the properties of the entire series are not systematically documented in the scientific literature. "This paper also gives a whole host of the properties of rare-earth oxides."

This includes, Azimi says, their morphology, surface chemistry, crystallographic structure, grain structure, sintering temperature and density — yielding "a catalog of information" about how to process and use these materials. The MIT researchers also showed that the materials have greater hardness than many others currently used in rough industrial settings.

Despite their name, rare earth metals are not particularly rare. "Some of them are as abundant as nickel or copper," Azimi says — both of which are widely used industrially.

But separating rare earth metals from the minerals in which they are found can be costly and can leave toxic residues, so their production has been limited. China is currently the world's major supplier of these elements, which have many high-tech applications.

The ceramic forms of rare earth oxides could be used either as coatings on various substrates, or in bulk form. Because their hydrophobicity is an intrinsic chemical property, Azimi says, "even if they are damaged, they can sustain their hydrophobic properties."

To prove the point, the team exposed some of these ceramics to a steam environment, similar to what they would face in a power-plant condenser. Typical polymer-based hydrophobic coatings quickly degrade when exposed to steam, but the ceramics kept their hydrophobicity intact, Varanasi says. The materials sustained their hydrophobicity even after exposure to abrasion, as well as temperatures of 1,000 degrees Celsius, Azimi says

By coating nanotextured surfaces with these ceramics at MIT's Microsystems Technology Laboratories, the team also demonstrated extreme water repellency where droplets bounced off the surface. "These materials therefore provide a pathway to make durable superhydrophobic surfaces as well, and these coatings can be fabricated using existing processes. This makes it amenable to retrofit existing facilities, Azimi says. Such extreme non-wetting properties coupled with durability could find applications in steam turbines and aircraft engines, for example.

Most prior research on hydrophobic materials and coatings has focused on surface textures and structure rather than on their intrinsic chemical properties, Varanasi says. "No one has really addressed the key challenge of robust hydrophobic materials," he says. "We expect these hydrophobic ceramics to have far-reaching technological impact."

Steve Granick, a professor of materials science and engineering and professor of chemistry at the University of Illinois at Urbana-Champaign, who was not connected with this research, says, "This discovery of intrinsic hydrophobicity is exciting and fresh. It's a terrific example of payoff from thinking outside the box."

The research, which included MIT postdoc Rajeev Dhiman and graduate students Hyuk-Min Kwon and Adam Paxson, was supported by the National Science Foundation, the Dupont-MIT Alliance, the MIT Energy Initiative and the Defense Advanced Research Projects Agency.

David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:

Phone: 617-253-2700
Fax: 617-258-8762

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Water

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Automotive/Transportation

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

GLOBALFOUNDRIES to Deliver Socionext’s Next Generation Graphics Controller for Advanced In-Vehicle Display Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, enables enhanced features and security protection for remote display applications June 28th, 2018

Industrial

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Researchers present new strategy for extending ductility in a single-phase alloy June 28th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Construction

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project