Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rare earth oxides make water-repellent surfaces that last: Ceramic forms of hydrophobic materials could be far more durable than existing coatings or surface treatments

MIT postdoc Gisele Azimi, left, displays three of the 13 different ceramic disks made from oxides of the rare earth elements, with associate professor Kripa Varanasi. Behind them is the furnace used to convert the powdered oxides into solid ceramic form.
Photo: David Castro-Olmedo/MIT
MIT postdoc Gisele Azimi, left, displays three of the 13 different ceramic disks made from oxides of the rare earth elements, with associate professor Kripa Varanasi. Behind them is the furnace used to convert the powdered oxides into solid ceramic form.

Photo: David Castro-Olmedo/MIT

Abstract:
Water-shedding surfaces that are robust in harsh environments could have broad applications in many industries including energy, water, transportation, construction and medicine. For example, condensation of water is a crucial part of many industrial processes, and condensers are found in most electric power plants and in desalination plants.

Rare earth oxides make water-repellent surfaces that last: Ceramic forms of hydrophobic materials could be far more durable than existing coatings or surface treatments

Cambridge, MA | Posted on January 23rd, 2013

Hydrophobic materials — ones that prevent water from spreading over a surface, instead causing it to form droplets that easily fall away — can greatly enhance the efficiency of this process. But these materials have one major problem: Most employ thin polymer coatings that degrade when heated, and can easily be destroyed by wear.

MIT researchers have now come up with a new class of hydrophobic ceramics that can overcome these problems. These ceramic materials are highly hydrophobic, but are also durable in the face of extreme temperatures and rough treatment.

The work, by mechanical engineering postdoc Gisele Azimi and Associate Professor Kripa Varanasi, along with two graduate students and another postdoc, is described this week in the journal Nature Materials. Durability has always been a challenge for hydrophobic materials, Varanasi says — a challenge he says his team has now solved.

Ceramics are highly resistant to extreme temperatures, but they tend to be hydrophilic (water-attracting) rather than hydrophobic. The MIT team decided to try making ceramics out of a series of elements whose unique electronic structure might render the materials hydrophobic: the so-called rare earth metals, which are also known as the lanthanide series on the periodic table.

Since all of the rare earth metals have similar physico-chemical properties, the team expected that their oxides would behave uniformly in their interactions with water. "We thought they should all have similar properties for wetting, so we said, ‘Let's do a systematic study of the whole series,'" says Varanasi, who is the Doherty Associate Professor of Ocean Utilization.

To test this hypothesis, they used powder oxides of 13 of the 14 members of that series (excluding one rare earth metal that is radioactive) and made pellets by compacting and heating them to nearly their melting point in order to fuse them into solid, ceramic form — a process called sintering.

Sure enough, when tested, all 13 of the rare earth oxide ceramics did display strong hydrophobic properties, as predicted. "We showed, for the first time, that there are ceramics that are intrinsically hydrophobic," Varanasi says.

These rare earth oxides "are exotic materials, and interestingly their wetting properties have not been studied," he says, adding that many of the properties of the entire series are not systematically documented in the scientific literature. "This paper also gives a whole host of the properties of rare-earth oxides."

This includes, Azimi says, their morphology, surface chemistry, crystallographic structure, grain structure, sintering temperature and density — yielding "a catalog of information" about how to process and use these materials. The MIT researchers also showed that the materials have greater hardness than many others currently used in rough industrial settings.

Despite their name, rare earth metals are not particularly rare. "Some of them are as abundant as nickel or copper," Azimi says — both of which are widely used industrially.

But separating rare earth metals from the minerals in which they are found can be costly and can leave toxic residues, so their production has been limited. China is currently the world's major supplier of these elements, which have many high-tech applications.

The ceramic forms of rare earth oxides could be used either as coatings on various substrates, or in bulk form. Because their hydrophobicity is an intrinsic chemical property, Azimi says, "even if they are damaged, they can sustain their hydrophobic properties."

To prove the point, the team exposed some of these ceramics to a steam environment, similar to what they would face in a power-plant condenser. Typical polymer-based hydrophobic coatings quickly degrade when exposed to steam, but the ceramics kept their hydrophobicity intact, Varanasi says. The materials sustained their hydrophobicity even after exposure to abrasion, as well as temperatures of 1,000 degrees Celsius, Azimi says

By coating nanotextured surfaces with these ceramics at MIT's Microsystems Technology Laboratories, the team also demonstrated extreme water repellency where droplets bounced off the surface. "These materials therefore provide a pathway to make durable superhydrophobic surfaces as well, and these coatings can be fabricated using existing processes. This makes it amenable to retrofit existing facilities, Azimi says. Such extreme non-wetting properties coupled with durability could find applications in steam turbines and aircraft engines, for example.

Most prior research on hydrophobic materials and coatings has focused on surface textures and structure rather than on their intrinsic chemical properties, Varanasi says. "No one has really addressed the key challenge of robust hydrophobic materials," he says. "We expect these hydrophobic ceramics to have far-reaching technological impact."

Steve Granick, a professor of materials science and engineering and professor of chemistry at the University of Illinois at Urbana-Champaign, who was not connected with this research, says, "This discovery of intrinsic hydrophobicity is exciting and fresh. It's a terrific example of payoff from thinking outside the box."

The research, which included MIT postdoc Rajeev Dhiman and graduate students Hyuk-Min Kwon and Adam Paxson, was supported by the National Science Foundation, the Dupont-MIT Alliance, the MIT Energy Initiative and the Defense Advanced Research Projects Agency.

David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:

Phone: 617-253-2700
Fax: 617-258-8762

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Nanomedicine

Sensor technology can improve accuracy of prostate cancer diagnosis, research shows July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Military

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Water

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Bacteria Cellulose, Natural Polymers with Applications in Various Industries Synthesized in Iran June 22nd, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Industrial

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Construction

Research findings point way to designing crack-resistant metals June 24th, 2015

Solar cells in the roof and nanotechnology in the walls June 16th, 2015

Production of Nanocomposites by Using Direct Nano-Welding of Micromaterials in Iran June 4th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project