Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > First multipart molecular motor created by international research team

This illustration shows the structure of the molecular motors designed by the international team of scientists. Image: Saw-Wai Hla, Ohio University.
This illustration shows the structure of the molecular motors designed by the international team of scientists.

Image: Saw-Wai Hla, Ohio University.

Abstract:
An international team of scientists has taken the next step in creating nanoscale machines by designing a multi-component molecular motor that can be moved clockwise and counterclockwise. Although researchers can rotate or switch individual molecules on and off, the new study is the first to create a stand-alone molecular motor that has multiple parts, said Saw-Wai Hla, an Ohio University professor of physics and astronomy who led the study with Christian Joachim of A*Star in Singapore and CEMES/CNRS in France and Gwenael Rapenne of CEMES/CNRS.

First multipart molecular motor created by international research team

Germany | Posted on January 23rd, 2013

It's an essential step in creating nanoscale devices—quantum machines that operate on different laws of physics than classical machines—that scientists envision could be used for everything from powering quantum computers to sweeping away blood clots in arteries.

In the study, published in Nature Nanotechnology, the scientists demonstrated that they could control the motion of the motor with energy generated by electrons from a scanning tunneling microscope tip. The motor is about 2 nanometers in length and 1 nanometer high and was constructed on a gold crystal surface.

t a temperature of minus 315 degrees Fahrenheit, the motor could move independently through thermal excitation. When scientists cooled the sample to minus 450 degrees, the motor stopped rotating. The researchers selectively applied electron energy to different parts of the motor to prompt it to move clockwise and counterclockwise.

"If we want to build an actual device based on this motor, we would install electrodes on the surface to create an energy source," Hla said. To construct the molecular motor, the scientific team designed a stationary base of atoms that is connected to an upper moving part by one atom of ruthenium, which serves as the "ball bearing." The upper piece of the motor features five arms made of iron atoms. The researchers made one arm shorter than the others to be able to track the motion of the machine. The entire device is held upright by using sulfur as an "atomic glue" to secure the motor to the gold surface, Hla explained.

The scientists now plan to use this model to build more complex machines with components that could be automated, Hla said.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper:

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Molecular Nanotechnology

DNA dominos on a chip: Carriers of genetic information packed together on a biochip like in nature August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Nanomedicine

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Quantum Computing

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Programmable ions set the stage for general-purpose quantum computers: A new quantum computer module combines proven techniques with advances in hardware and software August 4th, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic