Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A nano-gear in a nano-motor inside you: A molecular mechanism for generation of large force inside cells

A phagosome transported inside a living cell by molecular motors is held by a laser trap. This allows measurement of the picoNewton forces exerted by motors as they haul the phagosome inside the cell.

Credit: Sukant Saran, TIFR
A phagosome transported inside a living cell by molecular motors is held by a laser trap. This allows measurement of the picoNewton forces exerted by motors as they haul the phagosome inside the cell.

Credit: Sukant Saran, TIFR

Abstract:
To live is to move. You strike to swat that irritable mosquito, which skilfully evades the hand of death. How did that happen? Who moved your hand, and what saved the mosquito? Enter the Molecular Motors, nanoscale protein-machines in the muscles of your hand and wings of the mosquito. You need these motors to swat mosquitoes, blink your eyes, walk, eat, drink... just name it. Millions of motors tug as a team within your muscles, and you swat the mosquito. This is teamwork at its exquisite best.

A nano-gear in a nano-motor inside you: A molecular mechanism for generation of large force inside cells

India | Posted on January 17th, 2013

Paradoxically, a weak and inefficient motor (called dynein) is the one that generates large forces in many different biological processes. Why has nature made this counter-intuitive choice? Scientists at TIFR, led by Dr. Roop Mallik, have discovered that a team of dyneins is able to share a load much larger than any one of them can handle, due to the unique ability of each dynein to change gears. Because of this, dynein's do much better at teamwork than other stronger motors that cannot change gears. This work will be published in the top-tier journal Cell in January 2013.

This is the PhD thesis work of Arpan Rai, who was ably supported by members of Mallik's team, Ashim Rai, Avin Ramaiya and Rupam Jha. This group of young students took a laser beam and focused it down to a tiny spot inside a mouse cell. Small objects inside the cell which were being moved around by motors could be trapped in this laser beam. Now, the motors tried their best to pull this object out of this "laser trap". The figure shows an artist's rendition of such an object being pulled out of the laser trap by four dynein motors. Mallik says: "Each dynein showed a special ability to shift gears, just like you shift gears in your car to go uphill. Therefore, each dynein in a team could speed up or slow down, depending how hard it was pulled back. This allowed the dyneins to bunch close together as they were pulling. The bunching helped dyneins to share their load equitably, and therefore work efficiently to generate large forces. Remarkably, motor-teams made up of another motor (called kinesin) which is much stronger than dynein, could not generate comparable forces. The reason? Well you guessed it right. Kinesin does not have a gear!!"

Taken together, these new studies show that Nature may have learnt how to use the gear in a motor much before we made our Ferrari's and Lamborghini's. But, what boggles the mind is that dynein's gear works on a size scale that is ten-million times smaller than the Ferrari's gear.

####

For more information, please click here

Contacts:
Roop Malik

91-222-278-2702

Copyright © Tata Institute of Fundamental Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Molecular Machines

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Nanomedicine

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Discoveries

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE