Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Create Method for More Sensitive Electrochemical Sensors: Findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Vinayak Dravid
Vinayak Dravid

Abstract:
Graphene and related materials hold promise for the future of electrochemical sensors detectors that measure the concentration of oxygen, toxic gases, and other substances but many applications require greater sensitivity at lower detection ranges than scientists have been able to achieve.

Researchers Create Method for More Sensitive Electrochemical Sensors: Findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Chicago, IL and India | Posted on January 17th, 2013

A Northwestern University research team and partners in India have recently developed a new method for amplifying signals in graphene oxide-based electrochemical sensors through a process called "magneto-electrochemical immunoassay." The findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Researchers from Northwestern's McCormick School of Engineering and Applied Science, the Northwestern International Institute for Nanotechnology (IIN), the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, and the Institute for Microbial Technology (IMTECH)-India, a national laboratory of India, contributed to the research.

A paper about the work, "Enhancing Electrochemical Detection on Graphene Oxide-CNT Nanostructured Electrodes Using Magneto-Nanobioprobes," was published November 19 in Nature Scientific Reports.

Graphene-based nanocomposite films have recently been used as an effective sensing platform for the development of electrochemical sensors and biosensors because of their unique facile surface modification characteristics and high charge mobility.

The researchers' new concept combines the advantages carbon nanotubes and reduced graphene oxide together with electrochemical bursting of magnetic gold nanoparticles into a large number of metal ions.

High sensitivity was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. The researchers used tiny magnetic particles encapsulated in inert coating of silicon dioxide to make core-shell nanostructures with favorable magnetic properties of metallic iron while preventing them from oxidation or significant degradation. They were then coated with gold because of its chemical inertness and biocompatibility.

This novel immune-detection platform shows potential for rapid and sensitive screening of environmental pollutants or toxins in samples. Researchers reported the ultrahigh sensitivity of this method for a new generation of herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The process also proved to be efficient and cost-effective: tens of thousands of screen-printed electrodes can be manufactured quite readily with low cost for such hybrid assay.

The paper's authors included Vinayak Dravid, professor of materials science and engineering at Northwestern, a founding member of IIN, and director of the NUANCE Center; Gajendera Shekhawat, research associate professor of materials science and engineering at Northwestern; Jinsong Wu, research assistant professor of materials science and engineering at Northwestern; and lead author Priyanka Sharma, Vijayender Bhalla, E. Senthil Prasad, and C. Raman Suri, all of the Institute of Microbial Technology, India.

The National Science Foundation NSF-IREE, NSF-ECCS, and NSF-OISE grant supported this work, with partial support from NIH CCNE program at Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115
Northwestern University

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Chemists make new silicon-based nanomaterials March 27th, 2015

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Graphene

Graphene reduces wear of alumina ceramic March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Sensors

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Discoveries

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE