Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Create Method for More Sensitive Electrochemical Sensors: Findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Vinayak Dravid
Vinayak Dravid

Abstract:
Graphene and related materials hold promise for the future of electrochemical sensors ó detectors that measure the concentration of oxygen, toxic gases, and other substances ó but many applications require greater sensitivity at lower detection ranges than scientists have been able to achieve.

Researchers Create Method for More Sensitive Electrochemical Sensors: Findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Chicago, IL and India | Posted on January 17th, 2013

A Northwestern University research team and partners in India have recently developed a new method for amplifying signals in graphene oxide-based electrochemical sensors through a process called "magneto-electrochemical immunoassay." The findings could open up a new class of technologies with applications in medicine, chemistry, and engineering.

Researchers from Northwestern's McCormick School of Engineering and Applied Science, the Northwestern International Institute for Nanotechnology (IIN), the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, and the Institute for Microbial Technology (IMTECH)-India, a national laboratory of India, contributed to the research.

A paper about the work, "Enhancing Electrochemical Detection on Graphene Oxide-CNT Nanostructured Electrodes Using Magneto-Nanobioprobes," was published November 19 in Nature Scientific Reports.

Graphene-based nanocomposite films have recently been used as an effective sensing platform for the development of electrochemical sensors and biosensors because of their unique facile surface modification characteristics and high charge mobility.

The researchers' new concept combines the advantages carbon nanotubes and reduced graphene oxide together with electrochemical bursting of magnetic gold nanoparticles into a large number of metal ions.

High sensitivity was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. The researchers used tiny magnetic particles encapsulated in inert coating of silicon dioxide to make core-shell nanostructures with favorable magnetic properties of metallic iron while preventing them from oxidation or significant degradation. They were then coated with gold because of its chemical inertness and biocompatibility.

This novel immune-detection platform shows potential for rapid and sensitive screening of environmental pollutants or toxins in samples. Researchers reported the ultrahigh sensitivity of this method for a new generation of herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The process also proved to be efficient and cost-effective: tens of thousands of screen-printed electrodes can be manufactured quite readily with low cost for such hybrid assay.

The paper's authors included Vinayak Dravid, professor of materials science and engineering at Northwestern, a founding member of IIN, and director of the NUANCE Center; Gajendera Shekhawat, research associate professor of materials science and engineering at Northwestern; Jinsong Wu, research assistant professor of materials science and engineering at Northwestern; and lead author Priyanka Sharma, Vijayender Bhalla, E. Senthil Prasad, and C. Raman Suri, all of the Institute of Microbial Technology, India.

The National Science Foundation NSF-IREE, NSF-ECCS, and NSF-OISE grant supported this work, with partial support from NIH CCNE program at Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115
Northwestern University

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Chemistry

What can be discovered at the junction of physics and chemistry October 6th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single Ďsolitonsí promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project