Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).
A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).

Abstract:
High-performance infrared cameras are crucial for civilian and military applications such as night-vision goggles and search-and-rescue operations. Existing cameras usually fall into one of two types: active cameras, which use an invisible infrared source to illuminate the scene, usually in the near or short-wavelength infrared; and passive cameras, which detect the thermal radiation given off by a warm object, typically in the mid- or long-wavelength infrared, without the need for any illumination. Both camera types have advantages and disadvantages in the field.

Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

Chicago, IL | Posted on January 16th, 2013

Integrating both modes of imaging into a single camera would open new possibilities but doing so has proven challenging. Until now, dual-mode active and passive infrared cameras needed either two different infrared detectors or complex controllable filters to accommodate the different wavelengths, and then required additional signal processing to reconstruct a single image from the two modes.

However, in a move that may change the way we look a two-color imaging, researchers at the Northwestern University's Center for Quantum Devices have now found a way to integrate active and passive infrared imaging capability into a single chip. This opens the way to lighter and simpler dual-mode active/passive cameras with lower power dissipation.

A paper about the findings, "Active and Passive Infrared Imager Based on Short-Wave and Mid-Wave Type-II Superlattice Dual-Band Detectors," was published January 1 in the journal Optic Letters. The work was led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering and Applied Science.

The researchers achieved this feat by engineering the quantum properties of novel semiconductor materials called the indium arsenide/gallium antimonide (InAs/GaSb) type-II superlattices. Researchers at the center have been pioneering the development of type-II superlattices as a superior replacement of aging mercury-cadmium-telluride (HgCdTe) infrared camera technology in terms of both performance and cost.

Using the unique band-structure engineering capabilities of type-II superlattices, they have developed a new structure incorporating two different superlattices with different layer spacings, thus enabling detection with a cutoff wavelength of either 2.2m (active mode) or 4.5m (passive mode). This new device can simply switch from passive to active mode by a very small change in bias.

The work was funded by the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Announcements

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Photonics/Optics/Lasers

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Quantum nanoscience

New quantum phenomena in graphene superlattices September 18th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

'Nano-hashtags' could provide definite proof of Majorana particles: Eindhoven network of nanowires gives particles the space to exchange places August 23rd, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project