Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).
A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).

Abstract:
High-performance infrared cameras are crucial for civilian and military applications such as night-vision goggles and search-and-rescue operations. Existing cameras usually fall into one of two types: active cameras, which use an invisible infrared source to illuminate the scene, usually in the near or short-wavelength infrared; and passive cameras, which detect the thermal radiation given off by a warm object, typically in the mid- or long-wavelength infrared, without the need for any illumination. Both camera types have advantages and disadvantages in the field.

Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

Chicago, IL | Posted on January 16th, 2013

Integrating both modes of imaging into a single camera would open new possibilities but doing so has proven challenging. Until now, dual-mode active and passive infrared cameras needed either two different infrared detectors or complex controllable filters to accommodate the different wavelengths, and then required additional signal processing to reconstruct a single image from the two modes.

However, in a move that may change the way we look a two-color imaging, researchers at the Northwestern University's Center for Quantum Devices have now found a way to integrate active and passive infrared imaging capability into a single chip. This opens the way to lighter and simpler dual-mode active/passive cameras with lower power dissipation.

A paper about the findings, "Active and Passive Infrared Imager Based on Short-Wave and Mid-Wave Type-II Superlattice Dual-Band Detectors," was published January 1 in the journal Optic Letters. The work was led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering and Applied Science.

The researchers achieved this feat by engineering the quantum properties of novel semiconductor materials called the indium arsenide/gallium antimonide (InAs/GaSb) type-II superlattices. Researchers at the center have been pioneering the development of type-II superlattices as a superior replacement of aging mercury-cadmium-telluride (HgCdTe) infrared camera technology in terms of both performance and cost.

Using the unique band-structure engineering capabilities of type-II superlattices, they have developed a new structure incorporating two different superlattices with different layer spacings, thus enabling detection with a cutoff wavelength of either 2.2m (active mode) or 4.5m (passive mode). This new device can simply switch from passive to active mode by a very small change in bias.

The work was funded by the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discoveries

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Announcements

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Photonics/Optics/Lasers

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners June 17th, 2016

Quantum nanoscience

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Neutrons reveal unexpected magnetism in rare-earth alloy June 16th, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

NIST's super quantum simulator 'entangles' hundreds of ions June 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic