Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).
A Center for Quantum Devices researcher holds a heater and a narrow-band filter centered at 3.6m. The heater can be seen when imaged with the band-pass detectors sensitive up to 4.5m (left), but not in the ones with shorter detection wavelengths up to 2.2m (right).

Abstract:
High-performance infrared cameras are crucial for civilian and military applications such as night-vision goggles and search-and-rescue operations. Existing cameras usually fall into one of two types: active cameras, which use an invisible infrared source to illuminate the scene, usually in the near or short-wavelength infrared; and passive cameras, which detect the thermal radiation given off by a warm object, typically in the mid- or long-wavelength infrared, without the need for any illumination. Both camera types have advantages and disadvantages in the field.

Researchers Develop Integrated Dual-mode Active and Passive Infrared Camera: Based on type-II superlattices, high-performance infrared camera could aid search-and-rescue missions

Chicago, IL | Posted on January 16th, 2013

Integrating both modes of imaging into a single camera would open new possibilities but doing so has proven challenging. Until now, dual-mode active and passive infrared cameras needed either two different infrared detectors or complex controllable filters to accommodate the different wavelengths, and then required additional signal processing to reconstruct a single image from the two modes.

However, in a move that may change the way we look a two-color imaging, researchers at the Northwestern University's Center for Quantum Devices have now found a way to integrate active and passive infrared imaging capability into a single chip. This opens the way to lighter and simpler dual-mode active/passive cameras with lower power dissipation.

A paper about the findings, "Active and Passive Infrared Imager Based on Short-Wave and Mid-Wave Type-II Superlattice Dual-Band Detectors," was published January 1 in the journal Optic Letters. The work was led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering and Applied Science.

The researchers achieved this feat by engineering the quantum properties of novel semiconductor materials called the indium arsenide/gallium antimonide (InAs/GaSb) type-II superlattices. Researchers at the center have been pioneering the development of type-II superlattices as a superior replacement of aging mercury-cadmium-telluride (HgCdTe) infrared camera technology in terms of both performance and cost.

Using the unique band-structure engineering capabilities of type-II superlattices, they have developed a new structure incorporating two different superlattices with different layer spacings, thus enabling detection with a cutoff wavelength of either 2.2m (active mode) or 4.5m (passive mode). This new device can simply switch from passive to active mode by a very small change in bias.

The work was funded by the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Discoveries

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Military

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanotechnology leads to better, cheaper LEDs for phones and lighting September 24th, 2014

Engineered proteins stick like glue even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Photonics/Optics/Lasers

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Quantum nanoscience

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE