Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Mathematical breakthrough sets out rules for more effective teleportation: New protocol advances solutions for more efficient teleportation - the transport of quantum information at the speed of light

Abstract:
For the last ten years, theoretical physicists have shown that the intense connections generated between particles as established in the quantum law of 'entanglement' may hold the key to eventual teleportation of quantum information.

Mathematical breakthrough sets out rules for more effective teleportation: New protocol advances solutions for more efficient teleportation - the transport of quantum information at the speed of light

Cambridge, UK | Posted on January 16th, 2013

Now, for the first time, researchers have worked out how entanglement could be 'recycled' to increase the efficiency of these connections. Published in the journal Physical Review Letters, the result could conceivably take us a step closer to sci-fi style teleportation in the future, although this research is purely theoretical in nature.

The team have also devised a generalised form of teleportation, which allows for a wide variety of potential applications in quantum physics.

Once considered impossible, in 1993 a team of scientists calculated that teleportation could work in principle using quantum laws. Quantum teleportation harnesses the 'entanglement' law to transmit particle-sized bites of information across potentially vast distances in an instant.

Entanglement involves a pair of quantum particles such as electrons or protons that are intrinsically bound together, retaining synchronisation between the two that holds whether the particles are next to each other or on opposing sides of a galaxy. Through this connection, quantum bits of information - qubits - can be relayed using only traditional forms of classical communication.

Previous teleportation protocols, have fallen into one of two camps, those that could only send scrambled information requiring correction by the receiver, or more recently, "port-based" teleportation that doesn't require a correction, but needed an impractical amount of entanglement - each object sent would destroy the entangled state.

Now, physicists from Cambridge, University College London, and the University of Gdansk have developed a protocol to provide an optimal solution in which the entangled state is 'recycled', so that the gateway between particles holds for the teleportation of multiple objects.

They have even devised a protocol in which multiple qubits can be teleported simultaneously, although the entangled state degrades proportionally to the amount of qubits sent in both cases.

"The first protocol consists of sequentially teleporting states, and the second teleports them in a bulk," said Sergii Strelchuck from Cambridge's Department of Applied Mathematics and Theoretical Physics, who led the research with colleagues Jonathan Oppenheim of Cambridge and UCL and Michal Horodecki of the University of Gdansk.

"We have also found a generalised teleportation technique which we hope will find applications in areas such as quantum computation."

Einstein famously loathed the theory of quantum entanglement, dismissing it as "spooky action at a distance". But entanglement has since been proven to be a very real feature of our universe, and one that has extraordinary potential to advance all manner of scientific endeavor.

"There is a close connection between teleportation and quantum computers, which are devices which exploit quantum mechanics to perform computations which would not be feasible on a classical computer," said Strelchuck.

"Building a quantum computer is one of the great challenges of modern physics, and it is hoped that the new teleportation protocol will lead to advances in this area."

While the Cambridge physicists' protocol is completely theoretical, last year a team of Chinese scientists reported teleporting photons over 143km, breaking previous records, and quantum entanglement is increasingly seen as an important area of scientific investment. Teleportation of information carried by single atoms is feasible with current technologies, but the teleportation of large objects - such as Captain Kirk - remains in the realm of science fiction.

Adds Strelchuck: "Entanglement can be thought of as the fuel, which powers teleportation. Our protocol is more fuel efficient, able to use entanglement thriftily while eliminating the need for error correction."

####

For more information, please click here

Contacts:
Sergii Strelchuk

44-075-754-61510
or +44 (0)1223760367

Michal Horodecki
University of Gdansk


Jonathan Oppenheim
University College London
and Royal Society University Research Fellow

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper Generalized teleportation and entanglement recycling can be viewed here:

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Physics

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Quantum nanoscience

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Measuring the Smallest Magnets July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE