Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lomonosov Moscow State University are using Nanoparticle Tracking Analysis for environmental & biomedical nanoparticle monitoring

Vladimir Zyrin of the Faculty of Bioengineering & Bioinformatics used the NanoSight NS 500 in his diploma work on exosomes in human blood.
Vladimir Zyrin of the Faculty of Bioengineering & Bioinformatics used the NanoSight NS 500 in his diploma work on exosomes in human blood.

Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is used in the work of Dr Ilya Kurochkin of Lomonosov Moscow State University in the development of new bioanalytical systems for environmental and biomedical monitoring.

Lomonosov Moscow State University are using Nanoparticle Tracking Analysis for environmental & biomedical nanoparticle monitoring

Salisbury, UK | Posted on January 15th, 2013

Ilya Kurochkin is Professor and Head of the Laboratory of Postgenomic Chemistry in the Department of Chemistry at the Lomonsov Moscow State University. His research requires characterization of size distribution, concentration and to identify the presence of certain epitopes in two areas: exosomes for the prediction of adverse outcomes in patients with chronic heart failure and for the characterization of gold, silver and metal oxide nanoparticles in the development of new electrochemical biosensors and nanobioanalytical systems based on nanoplasmonic structures.

The study of exosomes is central to the research program. The term "exosome" refers to vesicles generated by exocytosis of multivesicular bodies. Exosomes are 20 - 100 nm in diameter and can be found in the amniotic fluid, blood, breast milk, and urine. Key mechanisms by which exosomes may exert their biological functions on cells include (1) direct contact between surface molecules of vesicles and cells, (2) endocytosis of vesicles, and (3) vesicle-cell membrane fusion. Exosomes may horizontally transfer mRNA and miRNA. Horizontal transfer of oncogenic receptor and transfer of HIV particles have been demonstrated in the case of exosomes. Examples for key functions of exosomes include antigen presentation and immunostimulatory and inhibitory activities.

Exosomes can carry valuable information about the pathology of physiological processes in the human body and, in particular, on the development of cardiovascular diseases. Knowledge of the size distribution, protein and polynucleotide nature of exosomes in some physiological fluid will actually get a sort of human "exosome profile". The features of this "exosomal profile" will open the possibility to analyze details of physiological processes and obtain information about the initial stages of the pathology.

In the research, it is important to be able to make a quick calculation of the number and estimate the size distribution of the exosomes in the biological fluids. The use of plasmonic nanoparticles will allow multiplex analysis of a large number of target proteins in exosomes. These measurements provide information about a specific protein composition of exosomes, and thus make it the basis of a new nanobioanalytical platform - "human exosome profile".

To achieve this, Professor Kurochkin chose Nanoparticle Tracking Analysis, NTA, as his preferred technique as he needed accurate information on the size and number of his nanostructures in the presence of much larger particles. Prior to NTA, he used a combination of techniques including dynamic light scattering (DLS), atomic force microscopy (AFM) and electron microscopy. As he noted, "The main benefit of the NTA is the ability to accurately measure size distribution for nanostructures in the presence of much larger particles directly in test solutions. The fact that the intensity of light scattering is proportional to the particle diameter to the power of 6, DLS (which captures the signal from all the particles in the sample mixture) does not give an accurate measurement of a particle with a small diameter in the presence of particles with a larger diameter. NTA captures the trajectories of individual particles and therefore the ratio of the particle size does not affect the accuracy of the analysis. Thus, the fact that NTA measures each particle separately is very important. I am particularly excited that I can measure my exosomes with specific antigens using fluorescent tags and plasmonic nanomarkers (gold or silver nanoparticles). Using NTA perfectly overcame the earlier experimental problems of my work. Measurements are rapid and by counting particle by particle, I achieved the level of accuracy I was seeking."

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 600+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

New-Contracts/Sales/Customers

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Leti Provides New Low-noise Image Technology to French SME PYXALIS; Will Be Demonstrated at Vision 2016 in Stuttgart November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project