Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Create Flexible, Nanoscale ‘Bed of Nails’ for Possible Drug Delivery

This image shows carbon nanofibers embedded in the elastic membrane.
This image shows carbon nanofibers embedded in the elastic membrane.

Abstract:
"Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality"

Authors: Ryan C. Pearce, Justin G. Railsback, Bryan D. Anderson, Mehmet F. Sarac, Joseph B. Tracy, Anatoli V. Melechko, North Carolina State University; Timothy E. McKnight, Oak Ridge National Laboratory

Published: online January 2013, ACS Applied Materials & Interfaces

Abstract: Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiNx) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 µm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiNx coatings as observed by SEM, EDX, and fluorescence microscopy. The free standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.

Researchers Create Flexible, Nanoscale ‘Bed of Nails’ for Possible Drug Delivery

Raleigh, NC | Posted on January 15th, 2013

Researchers at North Carolina State University have come up with a technique to embed needle-like carbon nanofibers in an elastic membrane, creating a flexible "bed of nails" on the nanoscale that opens the door to development of new drug-delivery systems.

The research community is interested in finding new ways to deliver precise doses of drugs to specific targets, such as regions of the brain. One idea is to create balloons embedded with nanoscale spikes that are coated with the relevant drug. Theoretically, the deflated balloon could be inserted into the target area and then inflated, allowing the spikes on the balloon's surface to pierce the surrounding cell walls and deliver the drug. The balloon could then be deflated and withdrawn.

But to test this concept, researchers first needed to develop an elastic material that is embedded with these aligned, nanoscale needles. That's where the NC State research team came in.

"We have now developed a way of embedding carbon nanofibers in an elastic silicone membrane and ensuring that the nanofibers are both perpendicular to the membrane's surface and sturdy enough to impale cells," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper on the work.

The researchers first "grew" the nanofibers on an aluminum bed, or substrate. They then added a drop of liquid silicone polymer. The polymer, nanofibers and substrate were then spun, so that centrifugal force spread the liquid polymer in a thin layer between the nanofibers - allowing the nanofibers to stick out above the surface. The polymer was then "cured," turning the liquid polymer into a solid, elastic membrane. Researchers then dissolved the aluminum substrate, leaving the membrane embedded with the carbon nanofibers "needles."

"This technique is relatively easy and inexpensive," says Melechko, "so we are hoping this development will facilitate new research on targeted drug-delivery methods."

The paper, "Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality," is published online in the journal ACS Applied Materials & Interfaces. Lead authors on the paper are Ryan Pearce, a Ph.D. student at NC State, and Justin Railsback, a former NC State student now pursuing a Ph.D. at Northwestern University. Co-authors are Melechko; Dr. Joseph Tracy, an assistant professor of materials science and engineering at NC State; Bryan Anderson and Mehmet Sarac, Ph.D. students at NC State; and Timothy McKnight of Oak Ridge National Laboratory.

The research was supported by the National Science Foundation and the Department of Defense, Defense Threat Reduction Agency.

-shipman-

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386


Dr. Anatoli Melechko
919.515.8636

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper - “Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality.”:

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Discoveries

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Military

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE