Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Create Flexible, Nanoscale ‘Bed of Nails’ for Possible Drug Delivery

This image shows carbon nanofibers embedded in the elastic membrane.
This image shows carbon nanofibers embedded in the elastic membrane.

Abstract:
"Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality"

Authors: Ryan C. Pearce, Justin G. Railsback, Bryan D. Anderson, Mehmet F. Sarac, Joseph B. Tracy, Anatoli V. Melechko, North Carolina State University; Timothy E. McKnight, Oak Ridge National Laboratory

Published: online January 2013, ACS Applied Materials & Interfaces

Abstract: Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiNx) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 µm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiNx coatings as observed by SEM, EDX, and fluorescence microscopy. The free standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.

Researchers Create Flexible, Nanoscale ‘Bed of Nails’ for Possible Drug Delivery

Raleigh, NC | Posted on January 15th, 2013

Researchers at North Carolina State University have come up with a technique to embed needle-like carbon nanofibers in an elastic membrane, creating a flexible "bed of nails" on the nanoscale that opens the door to development of new drug-delivery systems.

The research community is interested in finding new ways to deliver precise doses of drugs to specific targets, such as regions of the brain. One idea is to create balloons embedded with nanoscale spikes that are coated with the relevant drug. Theoretically, the deflated balloon could be inserted into the target area and then inflated, allowing the spikes on the balloon's surface to pierce the surrounding cell walls and deliver the drug. The balloon could then be deflated and withdrawn.

But to test this concept, researchers first needed to develop an elastic material that is embedded with these aligned, nanoscale needles. That's where the NC State research team came in.

"We have now developed a way of embedding carbon nanofibers in an elastic silicone membrane and ensuring that the nanofibers are both perpendicular to the membrane's surface and sturdy enough to impale cells," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper on the work.

The researchers first "grew" the nanofibers on an aluminum bed, or substrate. They then added a drop of liquid silicone polymer. The polymer, nanofibers and substrate were then spun, so that centrifugal force spread the liquid polymer in a thin layer between the nanofibers - allowing the nanofibers to stick out above the surface. The polymer was then "cured," turning the liquid polymer into a solid, elastic membrane. Researchers then dissolved the aluminum substrate, leaving the membrane embedded with the carbon nanofibers "needles."

"This technique is relatively easy and inexpensive," says Melechko, "so we are hoping this development will facilitate new research on targeted drug-delivery methods."

The paper, "Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality," is published online in the journal ACS Applied Materials & Interfaces. Lead authors on the paper are Ryan Pearce, a Ph.D. student at NC State, and Justin Railsback, a former NC State student now pursuing a Ph.D. at Northwestern University. Co-authors are Melechko; Dr. Joseph Tracy, an assistant professor of materials science and engineering at NC State; Bryan Anderson and Mehmet Sarac, Ph.D. students at NC State; and Timothy McKnight of Oak Ridge National Laboratory.

The research was supported by the National Science Foundation and the Department of Defense, Defense Threat Reduction Agency.

-shipman-

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386


Dr. Anatoli Melechko
919.515.8636

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper - “Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) while Maintaining their Alignment and Impalefection Functionality.”:

Related News Press

News and information

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

Nanomedicine

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Discoveries

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Announcements

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project