Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New research gives insight into graphene grain boundaries

Image of a grain boundary border
Image of a grain boundary border

Abstract:
Using graphene - either as an alternative to, or most likely as a complementary material with - silicon, offers the promise of much faster future electronics, along with several other advantages over the commonly used semiconductor. However, creating the one-atom thick sheets of carbon known as graphene in a way that could be easily integrated into mass production methods has proven difficult.

New research gives insight into graphene grain boundaries

Urbana, IL | Posted on January 15th, 2013

When graphene is grown, lattices of the carbon grains are formed randomly, linked together at different angles of orientation in a hexagonal network. However, when those orientations become misaligned during the growth process, defects called grain boundaries (GBs) form. These boundaries scatter the flow of electrons in graphene, a fact that is detrimental to its successful electronic performance.

Beckman Institute researchers Joe Lyding and Eric Pop and their research groups have now given new insight into the electronics behavior of graphene with grain boundaries that could guide fabrication methods toward lessening their effect. The researchers grew polycrystalline graphene by chemical vapor deposition (CVD), using scanning tunneling microscopy and spectroscopy for analysis, to examine at the atomic scale grain boundaries on a silicon wafer. They reported their results in the journal ACS Nano.

"We obtained information about electron scattering at the boundaries that shows it significantly limits the electronic performance compared to grain boundary free graphene," Lyding said. "Grain boundaries form during graphene growth by CVD, and, while there is much worldwide effort to minimize the occurrence of grain boundaries, they are a fact of life for now.

"For electronics you would want to be able to make it on a wafer scale. Boundary free graphene is a key goal. In the interim we have to live with the grain boundaries, so understanding them is what we're trying to do."

Lyding compared graphene lattices made with the CVD method to pieces of a cyclone fence.

"If you had two pieces of fence, and you laid them on the ground next to each other but they weren't perfectly aligned, then they wouldn't match," he said. "That's a grain boundary, where the lattice doesn't match."

The research involved Pop's group, led by Beckman Fellow Josh Wood, growing the graphene at the Micro and Nanotechnology Lab, and transferring the thin films to a silicon (Si02) wafer. They then used the STM at Beckman developed by Lyding for analysis, led by first author Justin Koepke of Lyding's group.

Their analysis showed that when the electrons' itinerary takes them to a grain boundary, it is like, Lyding said, hitting a hill.

"The electrons hit this hill, they bounce off, they interfere with themselves and you actually see a standing wave pattern," he said. "It's a barrier so they have to go up and over that hill. Like anything else, that is going to slow them down. That's what Justin was able to measure with these spectroscopy measurements.

"Basically a grain boundary is a resistor in series with a conductor. That's always bad. It means it's going to take longer for an electron to get from point A to point B with some voltage applied."

Images from the STM reveal grain boundaries that suggest two pieces of cloth sewn together, Lyding said, by "a really bad tailor."

In the paper, the researchers were able to report on their analysis of the orientation angles between pieces of graphene as they grew together, and found "no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and Si02 topography." They reported that analysis of those patterns "indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene."

Lyding said that the relationship between the orientation angle of the pieces of graphene and the wavelength of an electron impinges on the electron's movement at the grain boundary, leading to variations in their scattering.

"More scattering means that it is making it more difficult for an electron to move from one grain to the next," he said. "The more difficult you make that, the lower the quality of the electronic performance of any device made from that graphene."

The researchers work is aimed not just at understanding, but also at controlling grain boundaries. One of their findings - that GBs are aperiodic - replicated other work and could have implications for controlling them, as they wrote in the paper: "Combining the spectroscopic and scattering results suggest that GBs that are more periodic and well-ordered lead to reduced scattering from the GBs."

"I think if you have to live with grain boundaries you would like to be able to control exactly what their orientation is and choose an angle that minimizes the scattering," Lyding said.

By Steve McGaughey

####

About Beckman Institute for Advanced Science and Technology
The Institute's primary mission is to foster interdisciplinary work of the highest quality, transcending many of the limitations inherent in traditional university organizations and structures. The Institute was founded on the premise that reducing the barriers between traditional scientific and technological disciplines can yield research advances that more conventional approaches cannot.

For more information, please click here

Contacts:
Steve McGaughey

217-244-5582

Copyright © Beckman Institute for Advanced Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Thin films

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Graphene

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Discoveries

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic