Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Wavelength-Dependent Shapeshifting: Plasmon-Mediated Growth Control

Abstract:
Methods which allow predictable and reproducible control over the shape and defect structures of nanoparticles are a sought-after ideal in research on nanoparticle synthesis. Realising this ideal for silver nanoparticles is one step closer with the discovery that the localised surface plasmon resonance feature observed for nanoscale metals - the collective oscillation of their electrons caused by incident light - can be used to predictably direct the growth of silver nanocrystals.

Wavelength-Dependent Shapeshifting: Plasmon-Mediated Growth Control

Germany | Posted on January 10th, 2013

Such plasmon-mediated growth allows control over the size and shape of the crystals by controlling the wavelength of light incident on the sample. The underlying mechanism is based on silver redox chemistry: excitation of the plasmon in an aqueous citrate solution catalyses the reduction of silver ions, the speed of which influences the dominant facets (and hence the shape) of the growing crystals. In this way, longer excitation wavelengths can be applied to produce longer edge lengths. The corresponding oxidation of seed particles causes their dissolution, increasing the bulk concentration of silver ions.

Mirkin and co-workers have refined this technique to generate twinned silver nanocrystals by controlling the defects within the crystal structure. They discovered that irradiation at higher energies increases the number of twin boundaries during growth. By adjusting the wavelength from 400 to 500 nm, bipyramids or cubes with different types of twin boundaries could be selectively produced.

More specifically, longer excitation wavelengths (500 nm) reduce silver ions more slowly, producing monodisperse planar-twinned nanostructures (right bipyramids); shorter excitation wavelengths (400 nm) increase the silver ion reduction rate, increasing the growth speed and hence producing crystals with a higher number of defects, leading to twinned structures. Using the intermediate wavelength of 450 nm, silver nanocubes with multiple twin boundaries could be selectively generated.

This plasmon-mediated shape control could also be extended to longer wavelengths, which were tuned to produce silver nanorods with controllable aspect ratios.

The challenge is now to develop this method for other nanoscale species with plasmon resonances.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

Chemistry

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Materials/Metamaterials

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project