Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Southampton scientist develops strongest, lightest glass nanofibres in the world

This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton
This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton

Abstract:
The University of Southampton's Optoelectronics Research Centre (ORC) is pioneering research into developing the strongest silica nanofibres in the world.

Southampton scientist develops strongest, lightest glass nanofibres in the world

Southampton, UK | Posted on January 10th, 2013

Globally the quest has been on to find ultrahigh strength composites, leading ORC scientists to investigate light, ultrahigh strength nanowires that are not compromised by defects. Historically, carbon nanotubes were the strongest material available, but high strengths could only be measured in very short samples just a few microns long, providing little practical value.

Now research by ORC Principal Research Fellow Dr Gilberto Brambilla and ORC Director Professor Sir David Payne has resulted in the creation of the strongest, lightest weight silica nanofibres - 'nanowires' that are 15 times stronger than steel and can be manufactured in lengths potentially of 1000's of kilometres.

Their findings are already generating extensive interest from many companies around the world and could be set to transform the aviation, marine and safety industries. Tests are currently being carried out globally into the potential future applications for the nanowires.

"With synthetic fibres it is important to have high strength, achieved by production of fibre with extremely low defect rates, and low weight," says Dr Brambilla.

"Usually if you increase the strength of a fibre you have to increase its diameter and thus its weight, but our research has shown that as you decrease the size of silica nanofibres their strength increases, yet they still remain very lightweight. We are the only people who currently have optimised the strength of these fibres.

"Our discovery could change the future of composites and high strength materials across the world and have a huge impact on the marine, aviation and security industries. We want to investigate their potential use in composites and we envisage that this material could be used extensively in the manufacture of products such as aircraft, speedboats and helicopters," he adds.

Professor Payne explains: "Weight for weight, silica nanowires are 15 times stronger than high strength steel and 10 times stronger than conventional GRP (Glass Reinforced Plastic). We can decrease the amount of material used thereby reducing the weight of the object.

"Silica and oxygen, required to produce nanowires, are the two most common elements on the earth's crust, making it sustainable and cheap to exploit. Furthermore, we can produce silica nanofibres by the tonne, just as we currently do for the optical fibres that power the internet."

The research findings came about following five years of investigations by Dr Brambilla and Professor Payne using Gilberto's £500,000 Fellowship funding from the Royal Society.

Dr Brambilla shared his findings with fellow researchers at a special seminar he organised recently at the Kavli Royal Society International Centre, at Chicheley Hall, in Buckinghamshire.

"It was particularly challenging dealing with fibres that were so small. They are nearly 1,000 times smaller than a human hair and I was handling them with my bare hands," says Dr Brambilla.

"It took me some time to get used to it, but using the state-of-the-art facilities at the ORC I was able to discover that silica nanofibres become stronger the smaller they get. In fact when they become very, very small they behave in a completely different way. They stop being fragile and don't break like glass but instead become ductile and break like plastic. This means they can be strained a lot.

"Up until now most of our research has been into the science of nanowires but in the future we are particularly interested in investigating the technology and applications of these fibres," adds Dr Brambilla.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To find out more about the ORC's work on silica nanowires go to:

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Marine/Watercraft

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

NRL Researchers Develop Harder Ceramic for Armor Windows April 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aerospace/Space

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Deep Space Industries and Solid Prototype Announce a Strategic Partnership: Solid Prototype Inc integrates with DSI’s spacecraft design process, helping reduce costs and decrease turnaround time December 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE