Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Southampton scientist develops strongest, lightest glass nanofibres in the world

This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton
This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton

Abstract:
The University of Southampton's Optoelectronics Research Centre (ORC) is pioneering research into developing the strongest silica nanofibres in the world.

Southampton scientist develops strongest, lightest glass nanofibres in the world

Southampton, UK | Posted on January 10th, 2013

Globally the quest has been on to find ultrahigh strength composites, leading ORC scientists to investigate light, ultrahigh strength nanowires that are not compromised by defects. Historically, carbon nanotubes were the strongest material available, but high strengths could only be measured in very short samples just a few microns long, providing little practical value.

Now research by ORC Principal Research Fellow Dr Gilberto Brambilla and ORC Director Professor Sir David Payne has resulted in the creation of the strongest, lightest weight silica nanofibres - 'nanowires' that are 15 times stronger than steel and can be manufactured in lengths potentially of 1000's of kilometres.

Their findings are already generating extensive interest from many companies around the world and could be set to transform the aviation, marine and safety industries. Tests are currently being carried out globally into the potential future applications for the nanowires.

"With synthetic fibres it is important to have high strength, achieved by production of fibre with extremely low defect rates, and low weight," says Dr Brambilla.

"Usually if you increase the strength of a fibre you have to increase its diameter and thus its weight, but our research has shown that as you decrease the size of silica nanofibres their strength increases, yet they still remain very lightweight. We are the only people who currently have optimised the strength of these fibres.

"Our discovery could change the future of composites and high strength materials across the world and have a huge impact on the marine, aviation and security industries. We want to investigate their potential use in composites and we envisage that this material could be used extensively in the manufacture of products such as aircraft, speedboats and helicopters," he adds.

Professor Payne explains: "Weight for weight, silica nanowires are 15 times stronger than high strength steel and 10 times stronger than conventional GRP (Glass Reinforced Plastic). We can decrease the amount of material used thereby reducing the weight of the object.

"Silica and oxygen, required to produce nanowires, are the two most common elements on the earth's crust, making it sustainable and cheap to exploit. Furthermore, we can produce silica nanofibres by the tonne, just as we currently do for the optical fibres that power the internet."

The research findings came about following five years of investigations by Dr Brambilla and Professor Payne using Gilberto's £500,000 Fellowship funding from the Royal Society.

Dr Brambilla shared his findings with fellow researchers at a special seminar he organised recently at the Kavli Royal Society International Centre, at Chicheley Hall, in Buckinghamshire.

"It was particularly challenging dealing with fibres that were so small. They are nearly 1,000 times smaller than a human hair and I was handling them with my bare hands," says Dr Brambilla.

"It took me some time to get used to it, but using the state-of-the-art facilities at the ORC I was able to discover that silica nanofibres become stronger the smaller they get. In fact when they become very, very small they behave in a completely different way. They stop being fragile and don't break like glass but instead become ductile and break like plastic. This means they can be strained a lot.

"Up until now most of our research has been into the science of nanowires but in the future we are particularly interested in investigating the technology and applications of these fibres," adds Dr Brambilla.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To find out more about the ORC's work on silica nanowires go to:

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Marine/Watercraft

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Tracing barnacle's footprint August 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Materials/Metamaterials

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries February 13th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Aerospace/Space

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

Use stars’ own light to park tiny spacecraft at an exoplanet February 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project