Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthrough Iron-based Superconductors Set New Performance Records: New fabrication method could advance technologies ranging from medical imaging devices to grid-scale energy storage

Brookhaven physicists Weidong Si (left) and Qiang Li look into the vacuum chamber where the new high-field iron-based superconductors are made through a process called pulsed-laser deposition.
Brookhaven physicists Weidong Si (left) and Qiang Li look into the vacuum chamber where the new high-field iron-based superconductors are made through a process called pulsed-laser deposition.

Abstract:
The road to a sustainably powered future may be paved with superconductors. When chilled to frigid temperatures hundreds of degrees Celsius below zero, these remarkable materials are singularly capable of perfectly conducting electric current. To meet growing global energy demands, the entire energy infrastructure would benefit tremendously from incorporating new electricity generation, storage, and delivery technologies that use superconducting wires. But strict limits on temperature, high manufacturing costs, and the dampening effects of high-magnetic fields currently impede widespread adoption.

Breakthrough Iron-based Superconductors Set New Performance Records: New fabrication method could advance technologies ranging from medical imaging devices to grid-scale energy storage

Upton, NY | Posted on January 9th, 2013

Now, a collaboration led by scientists at the U.S. Department of Energy's Brookhaven National Laboratory have created a high performance iron-based superconducting wire that opens new pathways for some of the most essential and energy-intensive technologies in the world. These custom-grown materials carry tremendous current under exceptionally high magnetic fields-an order of magnitude higher than those found in wind turbines, magnetic resonance imaging (MRI) machines, and even particle accelerators. The results- published online January 8 in the journal Nature Communications-demonstrate a unique layered structure that outperforms competing low-temperature superconducting wires while avoiding the high manufacturing costs associated with high-temperature superconductor (HTS) alternatives.

"With the focused effort of this collaboration, we made a major breakthrough in iron chalcogenide-based superconducting films that not only sets the record for maximum critical current under high magnetic fields, but also raises the operating temperature for the material," said Brookhaven Lab physicist Weidong Si. "That could mean conducting more electricity in a wide range of technologies while using less energy to cool down the superconducting wire."

Copper-oxide (cuprate) high-temperature superconductors are a leading candidate for advanced energy applications, but these ceramic-based materials are very brittle and require a complicated and expensive multilayer synthesis process. Beyond that, anisotropies-structural asymmetries that prevent current from flowing evenly in different directions across a material-limit overall efficiency in these compounds.

Iron-based superconductors, however, are mechanically semi-metallic and therefore considerably less fragile. They can also be more easily shaped into the kinds of long wires needed in devices like massive offshore wind turbines, and they exhibit nearly isotropic behavior in magnetic fields, which allows for easier technology integration.

The scientists synthesized this novel film of iron, selenium, and tellurium to push existing performance parameters. In addition to the raw materials being relatively inexpensive, the synthesis process itself can be performed at just half the temperature of cuprate-based HTS alternatives, or approximately 400 degrees Celsius.

The team used a thin film fabrication technique called pulsed-laser deposition, which uses a high-power laser to vaporize materials that are then collected in layers on a substrate. This complex technique is a bit like carefully collecting the gas as it rises above a boiling pot, only with nearly atomic-level precision.

"A key breakthrough here is the discovery that adding layers of cesium-oxide in between the films and substrates dramatically increased the superconductor's critical current density, or maximum electricity load, as well as the critical temperature at which the material becomes superconducting," said Brookhaven Lab physicist Qiang Li, head of the Advanced Energy Materials Group and leader of this study. "That critical temperature threshold rose 30 percent over the same compound made without this layering process-still a very cold -253 degrees Celsius, but it promises significant application potential."

When tested, the critical current density of the new iron-based superconductor reached more than 1 million amperes (amps) per square centimeter, which is several hundred times more than regular copper wires can carry over the same area. Under an intense 30-tesla magnetic field, the film carried a record-high 200,000 amperes per square centimeter. For scale, consider that household circuit breakers usually blow when hitting just 20 amps.

In devices such as MRIs, using electricity to generate powerful magnetic fields is essential, and the magnetic tolerance of the superconducting wires must be high. The thin films in the new study remained functional under that 30-tesla magnetic field, while most hospital MRIs require just 1-3 tesla.

The researchers extended the study to include thin films grown on flexible metallic materials called rolling-assisted biaxial textured substrates, or RABiTS. These substrates, developed in a proprietary process invented by scientists at DOE's Oak Ridge National Laboratory, offered a similar performance with particularly important implications for long-length scaled up production in the future. The scientists also used scanning electron microscopes to probe the structure of the thin films and conducted x-ray diffraction tests at Brookhaven's National Synchrotron Light Source to further characterize the materials.

"We believe both critical current and transition temperatures can be further improved as we fine-tune the structure and chemical composition," Qiang Li said. "The next step is to pinpoint the mechanism behind the findings-the relationship between the structure and properties-which will provide guidance for the discovery of new superconductors with even greater performance."

The work at Brookhaven Lab was funded by the DOE's Office of Basic Energy Science, and the RABiTS substrates were provided by Oak Ridge National Lab under funding from DOE's Office of Electricity Delivery and Energy Reliability. Portions of the work were also carried out at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab, or find us on Facebook, www.facebook.com/BrookhavenLab/.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal Paper: "High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla":

Related News Press

Laboratories

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Thin films

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic