Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Oxford Nanopore Announces Further Collaborations for Nanopore Sensing Technology

Abstract:
Oxford Nanopore Technologies, the leading developer of nanopore sensing technology for the analysis of DNA, RNA, proteins and other single molecules, announces that it has completed a series of agreements with leading academic research institutions including University of Illinois at Urbana-Champaign, Brown University, Stanford University, Boston University, University of Cambridge and University of Southampton.

Oxford Nanopore Announces Further Collaborations for Nanopore Sensing Technology

Oxford, UK | Posted on January 8th, 2013

Oxford Nanopore has an intellectual property portfolio of more than 300 issued patents and patent applications in over 80 patent families. The Company is currently pursuing techniques for nanopore-based analysis using biological and solid-state nanopores, as well as hybrid versions of these, and also including a wide variety of adaptations and modifications. The expanded IP portfolio now covers a broad range of technologies, including:

DNA base identification using a biological nanopore
Characterisation of individual polymer molecules based on monomer-interface interactions
Addition of adapters to nanopores for sensing
Genetically modified nanopores for sensing
Combining nanopores and enzymes for sensing
Use of molecular motors in combination with nanopores
Localising polymerases to a surface, including pore-bound localisation
Use of solid state nanopores for detecting labelled ssDNA and dsDNA
Use of solid state devices to control movement of polymers
Detection and positional measurement of probes on a DNA strand as the strand passes through a nanoscale detector
Methods of fabricating solid-state nanopores including multi-layered devices
The use of functionalised solid-state nanopores for molecular characterisation, including graphene, tunnelling currents and nanotubes
Time-based multiplexed nanopore measurements on a single chip, including the incorporation of 96 well plate
Use of voltage to control DNA under feedback
Measurement of DNA interacting with a limited volume, such as a polymerase on a surface
Planar lipid bilayer array chip for parallel sensing from multiple channels
Sequencing by means of detection of products of enzymatic action on DNA/RNA using a nanopore
The use of multiple 'nodes' to analyse a single sample in a federated/clustered manner to reduce the time to result, and improve operating efficiencies
Methods and algorithms for analysing nanopore signals

"Oxford Nanopore has invested substantial resources into building its expertise, know-how and intellectual property portfolio that will support our leadership in nanopore sensing technologies. The collaborations announced today add to our existing positions in core areas spanning current and future generations of nanopore technology," said Dr Gordon Sanghera, CEO of Oxford Nanopore. "We are pleased to support further innovation in the laboratories of our collaborators, to complement the pioneering work being performed by our own interdisciplinary R&D staff."

####

About Oxford Nanopore Technologies
For more information about Oxford Nanopore's technology and intellectual property portfolio please visit www.nanoporetech.com/about-us/intellectual-property.

Oxford Nanopore Technologies Ltd is developing a novel technology for direct, electronic detection and analysis of single molecules using nanopores. The modular, scalable GridION technology platform and miniaturised MinION instrument are designed to offer substantial benefits in a variety of applications.

The Company is developing a range of applications for its nanopore sensing technology, with use in scientific research, clinical and industrial applications and all compatible with GridION and MinION. These include: DNA sequencing which combines a nanopore with a processive enzyme for the analysis of DNA and: Protein Analysis techniques that combines target proteins, aptamers and nanopores for direct, electronic analyses of those target proteins. The Company also has collaborations for the development of solid-state nanopores.

Oxford Nanopore has collaborations and exclusive licensing deals with leading institutions including the University of Oxford, Harvard and UCSC. The Company has funding programmes in these laboratories to support the science of nanopore sensing. Oxford Nanopore has licensed or owns more than 300 issued patents and patent applications in more than 80 patent families that relate to many aspects of nanopore sensing from protein nanopores to solid state nanopores and for the analysis of DNA, proteins and other molecules. This includes the use of functionalised solid-state nanopores for molecular characterisation, methods of fabricating solid-state nanopores and modifications of solid-state nanopores to adjust sensitivity or other parameters.

For more information, please click here

Contacts:
Feinstein Kean Healthcare
Gregory Kelley
+1 404.836.2302

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Materials/Metamaterials

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Patents/IP/Tech Transfer/Licensing

Researchers develop new way to manufacture nanofibers May 21st, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project