Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Oxford Nanopore Announces Further Collaborations for Nanopore Sensing Technology

Abstract:
Oxford Nanopore Technologies, the leading developer of nanopore sensing technology for the analysis of DNA, RNA, proteins and other single molecules, announces that it has completed a series of agreements with leading academic research institutions including University of Illinois at Urbana-Champaign, Brown University, Stanford University, Boston University, University of Cambridge and University of Southampton.

Oxford Nanopore Announces Further Collaborations for Nanopore Sensing Technology

Oxford, UK | Posted on January 8th, 2013

Oxford Nanopore has an intellectual property portfolio of more than 300 issued patents and patent applications in over 80 patent families. The Company is currently pursuing techniques for nanopore-based analysis using biological and solid-state nanopores, as well as hybrid versions of these, and also including a wide variety of adaptations and modifications. The expanded IP portfolio now covers a broad range of technologies, including:

DNA base identification using a biological nanopore
Characterisation of individual polymer molecules based on monomer-interface interactions
Addition of adapters to nanopores for sensing
Genetically modified nanopores for sensing
Combining nanopores and enzymes for sensing
Use of molecular motors in combination with nanopores
Localising polymerases to a surface, including pore-bound localisation
Use of solid state nanopores for detecting labelled ssDNA and dsDNA
Use of solid state devices to control movement of polymers
Detection and positional measurement of probes on a DNA strand as the strand passes through a nanoscale detector
Methods of fabricating solid-state nanopores including multi-layered devices
The use of functionalised solid-state nanopores for molecular characterisation, including graphene, tunnelling currents and nanotubes
Time-based multiplexed nanopore measurements on a single chip, including the incorporation of 96 well plate
Use of voltage to control DNA under feedback
Measurement of DNA interacting with a limited volume, such as a polymerase on a surface
Planar lipid bilayer array chip for parallel sensing from multiple channels
Sequencing by means of detection of products of enzymatic action on DNA/RNA using a nanopore
The use of multiple 'nodes' to analyse a single sample in a federated/clustered manner to reduce the time to result, and improve operating efficiencies
Methods and algorithms for analysing nanopore signals

"Oxford Nanopore has invested substantial resources into building its expertise, know-how and intellectual property portfolio that will support our leadership in nanopore sensing technologies. The collaborations announced today add to our existing positions in core areas spanning current and future generations of nanopore technology," said Dr Gordon Sanghera, CEO of Oxford Nanopore. "We are pleased to support further innovation in the laboratories of our collaborators, to complement the pioneering work being performed by our own interdisciplinary R&D staff."

####

About Oxford Nanopore Technologies
For more information about Oxford Nanopore's technology and intellectual property portfolio please visit www.nanoporetech.com/about-us/intellectual-property.

Oxford Nanopore Technologies Ltd is developing a novel technology for direct, electronic detection and analysis of single molecules using nanopores. The modular, scalable GridION technology platform and miniaturised MinION instrument are designed to offer substantial benefits in a variety of applications.

The Company is developing a range of applications for its nanopore sensing technology, with use in scientific research, clinical and industrial applications and all compatible with GridION and MinION. These include: DNA sequencing which combines a nanopore with a processive enzyme for the analysis of DNA and: Protein Analysis techniques that combines target proteins, aptamers and nanopores for direct, electronic analyses of those target proteins. The Company also has collaborations for the development of solid-state nanopores.

Oxford Nanopore has collaborations and exclusive licensing deals with leading institutions including the University of Oxford, Harvard and UCSC. The Company has funding programmes in these laboratories to support the science of nanopore sensing. Oxford Nanopore has licensed or owns more than 300 issued patents and patent applications in more than 80 patent families that relate to many aspects of nanopore sensing from protein nanopores to solid state nanopores and for the analysis of DNA, proteins and other molecules. This includes the use of functionalised solid-state nanopores for molecular characterisation, methods of fabricating solid-state nanopores and modifications of solid-state nanopores to adjust sensitivity or other parameters.

For more information, please click here

Contacts:
Feinstein Kean Healthcare
Gregory Kelley
+1 404.836.2302

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Liquipel Receives US Patent on Environmentally Friendly, Watersafe Treatment of Electronics: U.S. Patent Office Finds Watersafe™ Treatment Covers Cell Phones, Smart Phones, Tablets, Computers and More January 5th, 2015

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Nanobiotechnology

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Alliances/Partnerships/Distributorships

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE