Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new phase in reading photons: A JQI photodetector beats the quantum limit by a factor of 4

The error rate is plotted as a function of the mean number of photons used to deliver the information. The standard quantum limit (SQL) is the red line. The light gray line is the SQL line if you take into account that individual photon detector stages used were ~72 percent efficient rather than 100 percent (with the detector efficiencies being 84 percent. In the business of detecting single photons, 84 percent is top of the line.) The error probabilities measured for the system (black points with error bars) fall well below the quantum limit, by about 6 decibels in the center of the curve. This is equivalent to saying that the JQI receiver is performing better than the SQL by a factor of about 4 in determining the phase of an incoming signal. That is, the JQI receiver achieves an error probability that is 4 times lower than the so-called "Standard Quantum Limit." This graph shows results for a system that implements 10 adaptive measurements. The two other lines on the chart show what the expected uncertainty would be for a perfect system (100 percent efficient detectors) and without any of the imperfections that would be encountered in any realistic implementation, and a hypothetical ultimate-limit on uncertainty derived by Helstrom.

Credit: NIST
The error rate is plotted as a function of the mean number of photons used to deliver the information. The standard quantum limit (SQL) is the red line. The light gray line is the SQL line if you take into account that individual photon detector stages used were ~72 percent efficient rather than 100 percent (with the detector efficiencies being 84 percent. In the business of detecting single photons, 84 percent is top of the line.) The error probabilities measured for the system (black points with error bars) fall well below the quantum limit, by about 6 decibels in the center of the curve. This is equivalent to saying that the JQI receiver is performing better than the SQL by a factor of about 4 in determining the phase of an incoming signal. That is, the JQI receiver achieves an error probability that is 4 times lower than the so-called "Standard Quantum Limit." This graph shows results for a system that implements 10 adaptive measurements. The two other lines on the chart show what the expected uncertainty would be for a perfect system (100 percent efficient detectors) and without any of the imperfections that would be encountered in any realistic implementation, and a hypothetical ultimate-limit on uncertainty derived by Helstrom.

Credit: NIST

Abstract:
"That's not what I meant": human communication is fraught with misinterpretation. Written out in longhand, words and letters can be misread. A telegraph clerk can mistake a dot for a dash. Noise will always be with us, but at least a new JQI (*) device has established a new standard for reading quantum information with a minimum of uncertainty.

A new phase in reading photons: A JQI photodetector beats the quantum limit by a factor of 4

College Park, MD | Posted on January 6th, 2013

Success has come by viewing light pulses not with a single passive detector with but an adaptive network of detectors with feedback. The work on JQI's new, more assured photonic protocol was led by Francisco Becerra and carried out in Alan Migdall's JQI lab. They report their results in Nature Photonics (**). Here are some things you need to know to appreciate this development.

HOW TO MODULATE?

Digital data, in its simplest form, can be read with a process called on-off keying: a detector senses the intensity of incoming bursts of electrons in wires or photons through fibers and assigns a value of 0 or 1. A more sophisticated approach to modulating a signal (not merely off/on) is to encode data in the phase of the pulse. In "phase-shift keying," information is encoded in the amount of phase shift imposed on a carrier wave; the phase of the wave is how far along the wave cycle you happen to be (say, at the top of a crest or the bottom of a trough in a sinusoidal, as in this figure).

WHAT KIND OF ALPHABET?

Larger words can be assembled from a small suite of symbols. The Roman alphabet has 26 letters, the Greek only 24. Binary logic, and most transistors, makes do with just a two-letter alphabet. Everything is a 0 or a 1, and larger numbers and letters and words are assembled from as many binary bits as are necessary. But what if we enlarged the alphabet from two to four? In quaternary logic more data can be conveyed in a single pulse. The cost of this increase is having to write and read 4 states of modulation (or 4 symbols). Even more efficient in terms of packing data, but correspondingly more difficult to implement, is logic based on 6 states, or 8, or any higher number. Digital data at its most basic---at the level of transistor---remains in binary form, but for communicating this data, higher number alphabets can be used. In fact, high-definition television delivery already involves high-level logic.

UNCERTAINTY

No matter what kind of logic is used, errors creep in. A detector doesn't just unequivocally measure a 0 or a 1. The reading process is imperfect. And even worse, the state of the light pulse is inherently uncertain, and that is a real problem when the light pulses belong to a set of overlapping states. This is illustrated in the figure below for binary and quaternary phase states.

On the left side of the figure, the measurement of the phase of a light pulse is depicted, where there are only two choices. Is the pulse in the alpha state or the -alpha state? Because the tails of one overlap the other there is a slight ambiguity that leads to uncertainty in which state a measurement indicates. On the right, four possible states are depicted on a complex-number graph (with real (Re) and imaginary (Im) axes). Here the overlap of the states is more complicated, but results in similar ambiguities of the measured states, seen mostly near the borders (decision threshold lines) between the states.

STANDARD QUANTUM LIMIT

Decades ago communications theory established a minimal uncertainty for the accurate transmission and detection of information encoded in overlapping states. The hypothetical minimal detection error using conventional schemes is called the standard quantum limit and it depends on things like how many photons of light comprise the signal, how many levels (binary, quaternary, etc.) need to be read out, and which physical property of light is used to encode the information, such as the phase.

But starting in the 1970s with physicist Carl W. Helstrom, some scientists have felt that the standard quantum limit could be circumvented. The JQI researchers do exactly this by using not a single passive photo-detector, but an active detection process involving a series of stages. At each stage, the current light signal strikes a partially-silvered mirror, which peels off a fraction of the pulse for analysis and the rest goes on to subsequent stages. At each stage the signal is combined with a separate reference oscillator wave used as a phase reference against which the signal phase is determined. This is done by shifting the reference wave by a known amount and letting it interfere with the signal wave at the beamsplitter. By altering that known shift, the interference pattern can reveal something about the phase of the input pulse.

ACTIVE DETECTION

By combining many such stages (see the figure below) and using information gained by previous stages to adjust the phase of the reference wave in successive stages, a better estimate of the signal phase can be obtained.

Detecting phase in this adaptive way, and implemented in a feedback manner, the JQI system is able to beat the standard quantum limit for a set of 4 states (quaternary) encoding information as a phase. These states are represented as fuzzy distributions arranged at different angles around a circle as seen in the figure above where the angles represent the phase of the light pulses.

The JQI noise-reduction achievement is depicted in the graph below. The error rate is plotted as a function of the mean number of photons used to deliver the information. The standard quantum limit (SQL) is the red line. The light gray line is the SQL line if you take into account that individual photon detector stages used were ~72% efficient rather than 100% (with the detector efficiencies being 84%. In the business of detecting single photons, 84% is top of the line.)

The error probabilities measured for the system (black points with error bars) fall well below the quantum limit, by about 6 decibels in the center of the curve. This is equivalent to saying that the JQI receiver is performing better than the SQL by a factor of about 4 in determining the phase of an incoming signal. That is, the JQI receiver achieves an error probability that is 4 times lower than the so-called "Standard Quantum Limit." This graph shows results for a system that implements 10 adaptive measurements. The two other lines on the chart show what the expected uncertainty would be for a perfect system (100% efficient detectors) and without any of the imperfections that would be encountered in any realistic implementation, and a hypothetical ultimate-limit on uncertainty derived by Helstrom.

To conclude, the JQI photon receiver features an error rate four times lower than perfect conventional receivers, over a wide range of photon number, and with discrimination for four states. The only previous detection below the quantum limit was for a very narrow range of photons and with only a 2-state protocol and only slightly below the SQL.

(**) "Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination," by F. E. Becerra, J. Fan, G. Baumgartner, J. Goldhar, J. T. Kosloski, and A. Migdall, Nature Photonics, published online 6 January 2013.

####

About Joint Quantum Institute
The Joint Quantum Institute (JQI) is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

For more information, please click here

Contacts:
Press contact at JQI:
Phillip F. Schewe

301-405-0989

Alan Migdall

301-975-2331

Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Tools

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Photonics/Optics/Lasers

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramidís carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

Quantum nanoscience

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE