Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Extraction of Ascorbic Acid by Using Nano-Reactors

Abstract:
Researchers at Iran's National Institute for Oceanography and K. N. Tousi University of Technology succeeded in the extraction of ascorbic acid through molecularly imprinted polymer method in aqueous media.

Extraction of Ascorbic Acid by Using Nano-Reactors

Tehran, Iran | Posted on December 31st, 2012

The synthesis of molecular imprinted polymers as an imitation of biological receptor has drawn the attraction of many researchers in recent years. In these methods, a molecular imprint actually enters a polymeric network, and after its extraction, voids in size and shape of the imprint remain in the polymer network. The obtained polymer is used for selective extraction purposes.

In this research, ascorbic acid was used as a biological imprint. The simultaneous measurement of ascorbic acid in the presence of dopamine in biological environment has always been a challenge. According to the research, the polymerization of pyrrole in addition to the molecules of ascorbic acid imprint on SBA-15 silica bed enabled the synthesis of molecular imprint polymer in an aqueous media. This approach also made possible the synthesis of the molecular imprint polymer at nanometric scale, which resulted in advantages in the molecular imprint polymer such as increase in the adsorption capacity and in the mass transfer rate.

"In this research, SBA-15 hexagonal channels are used as nano-reactor in order to carry out the reaction between the imprint molecules and monomers. The use of polypyrrole bed for the molecular imprint process and overcoming the problems in the synthesis of molecular imprint polymers in aqueous media are among other characteristics of the research," Dr. Ali Mehdiniya, a member of the Scientific Board of Iran's National Institute for Oceanography, said.

The research can be considered a step towards the green synthesis of molecular imprint polymers in order to solve the low kinetic problem of the common molecular imprint polymers.

Results of the research have been published in detail in Biosensors and Bioelectronics, vol. 39, issue 1, pp. 88-93.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Chemistry

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Discoveries

Improving organic transistors that drive flexible and conformable electronics: UMass Amherst scientists advance understanding of strain effects on performance May 5th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project