Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > May the force be with the atomic probe: New models suggest devising means of probing a surface at a sub-micrometric level as this will help us understand how electrons’ diffusion affects long-range attractive forces

Abstract:
Theoretical physicist Elad Eizner from Ben Gurion University, Israel, and colleagues created models to study the attractive forces affecting atoms located at a wide range of distances from a surface, in the hundreds of nanometers range. Their results, about to be published in EPJ D, show that these forces depend on electron diffusion, regardless of whether the surface is conducting or not. Ultimately, these findings could contribute to designing minimally invasive surface probes.

May the force be with the atomic probe: New models suggest devising means of probing a surface at a sub-micrometric level as this will help us understand how electrons’ diffusion affects long-range attractive forces

New York, NY and Heidelberg, Germany | Posted on December 21st, 2012

Bombarding a surface with atoms helps us understand the distribution of its electrons and the structural arrangement of the surface atoms. The authors focused on understanding how a long-range force— referred to as the van der Waals-Casimir-Polder (vdW-CP) force — present between an atom and a surface allow us to distinguish surface characteristics on the basis of their conductivity.
A key factor in understanding the behaviour of the force, they realised, is the size of the electron cloud surrounding an impurity charge in the system. The latter depends both on the electrons' conductivity and their capability to diffuse in and along the surface.
They devised one model for the diffusion of the electronic charge in the bulk of the material and another one in the near-surface region. They tested their models on both conducting and non-conducting surfaces. They were thus able to explain why the atom-surface force shows a continuous transition in terms of conductivity between both types of surfaces.
For distances comparable to the size of the electron cloud spread, the strength of the vdW-CP attraction force, they found, can help distinguish between bulk and surface electrons diffusion. It could therefore be used as a probe. Potential applications exist, for example, in quantum computer hardware architectures focusing on the interface between different carriers of quantum bits of information.

Reference:

E.Eizner, B. Horovitz, and C. Henkel (2012), Van der Waals-Casimir-Polder interaction of an atom with a composite surface, European Physical Journal D, DOI: 10.1140/epjd/e2012-30294-x

####

For more information, please click here

Contacts:
Ann Koebler

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

European Physical Journal:

Related News Press

Physics

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Imaging

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Tools

Evident Thermoelectrics Announces Launch of World's-First Thermoelectric Product Based on Skutterudite Material Technology July 7th, 2015

Expert presentations and practical demonstrations impress nanoparticle characterization seminar attendees July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project