Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Materials science: The secret of nanoparticle packing in cement

Abstract:
Cement production is responsible for 5% of carbon dioxide emissions. If we are to invent a "green" cement, we need to understand in more detail the legendary qualities of traditional Portland cement. A research group partly financed by the Swiss National Science Foundation (SNSF) is tackling this task.

Materials science: The secret of nanoparticle packing in cement

Switzerland | Posted on December 20th, 2012

Discovering the perfect composition of Portland cement, the most common type of cement, was the result of years of experience as well as repeated trials and errors. Emanuela Del Gado, SNSF professor at the Institute for Building Materials of the ETH Zurich, explains that its success is the result of two key factors: its legendary hardness and the availability of its constituent elements.

5% of carbon dioxide emissions
The flipside of the coin: its production requires burning calcium carbonate. This process is responsible for approximately 5% of all carbon dioxide emissions or the equivalent of the entire 2007 emissions of India. But a more sustainable recipe for cement has to meet high standards both in terms of material hardness and accessibility to raw materials.

Because of the massive ecological impact of cement production, various research groups worldwide are trying to understand why the mixture of this powder and water sets to such hardness.

Different densities at the nano level
Researchers of the Massachussetts Institute of Technology (MIT) have concentrated on studying the behaviour of concrete at the nano level. In their experiments, they used an instrument capable of applying mechanical stress at the sub-micro level. As a result, they were able to show that densities vary strongly from one measuring point to the other at this scale. But they were not able to explain why.

This is where physicist Emanuela Del Gado enters the scene. She takes a special interest in amorphous materials whose constituents combine in a disorderly manner. Her studies of such materials focus on the nano level. "It is at this level and not at the atomic level that certain material properties are revealed. This also applies to hydrated calcium silicate, a major component of cement which plays an important role in the setting process," she explains.

Packing particles of different sizes
The researchers first developed a packing model of hydrated calcium silicate nanoparticles. They then devised a method for observing their precipitation based on numerical simulations. This approach has proven successful (*). "We were able to show that the different densities on the nano scale can be explained by the packing of nanoparticles of varying sizes. At this crucial level, the result is greater material hardness than if the particles were of the same size and it corresponds to the established knowledge that, at macroscopic level, aggregates of different sizes form a harder concrete."

Until today, all attempts to reduce or partially replace burnt calcium carbonate in the production of cement have resulted in less material hardness. By gaining a better understanding of the mechanisms at the nano level, it is possible to identify physical and chemical parameters and to improve the carbon footprint of concrete without reducing its hardness.

Full bibliographic information

E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip (2012). Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing. Physical Review Letters. DOI: 10.1103/PhysRevLett.109.155503

####

For more information, please click here

Contacts:
Martina Stofer


Prof. Dr. Emanuela Del Gado
Institut für Baustoffe
ETH Zürich
CH-8093 Zürich
Tel.: +41 44 633 37 44

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Discoveries

A fast solidification process makes material crackle February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Research partnerships

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Construction

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

SiC Nanoparticles Applied to Modify Properties of Portland Cement January 14th, 2016

Application of Graphene Structures to Produce Fireproof, Anticorrosive Nanocoatings October 21st, 2015

Carbon Nanotubes Applied to Create Electrical Conductivity in Woolen Fabrics September 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic