Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Abstract:
A team of researchers from three medical institutions in Guangzhou, China, have found that iron oxide nanoparticles (INOPS) are a useful contrast agent for in vivo magnetic resonance tracking of transplanted human endothelial cells. However, the impact of INOPS on the cells varies with a number of factors including the INOPS load. They found that the percentage of iron-labeled cells was significantly lower after 48 hours post-transplantation than at 24 hours post-transplantation. They also found that high INOPS concentration can affect cell activity. High INOPS concentration can induce cell death (apoptosis).

Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Putnam Valley, NY | Posted on December 20th, 2012

Their study is published in the current issue of Cell Transplantation (21:9), now freely available on-line at /www.ingentaconnect.com/content/cog/ct/.

"A good MRI contrast agent must possess a number of features," said study co-author Dr. Wen-Li Chen, at South China Normal University's MOE Key Laboratory of Laser Life Science. "Those features are: low toxicity and good stabilization, high sensitivity, good solubility and the ability to remain in the target cell for a long time. In our study, we found that INOPS are sensitive and can perturb the static magnetic field and provide a string change in MR signals."

Citation: Yang, F-Y.; Yu, M-X.; Zhou, Q.; Chen, W-L.; Gao, P.; Huang, Z. Effects of Iron Oxide Nanoparticle Labeling on Human Endothelial Cells. Cell Transplant. 21(9):1805-1820; 2012.

The Coeditors-in-chief for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at
The researchers found that the INOPS could be taken up by the cell rather than adhering to the exterior of the cell membrane. However, they also found that a proportional relationship might exist between the number of labeled cells and signal intensity.

"For the first time, we identified that autophagy death could take place at high INOPS loading concentrations," said the researchers.

They also discovered that an increased incubation time, from 24 to 48 hours, did not increase cellular uptake of INOPS and that the percentage of labeled cells declined after 24 hours to be significantly lower by 48 hours.

"It is possible that when the intracellular iron becomes saturated, the particles may start to be expelled out of cells," they concluded. "Thus, the determination of optimal loading concentration is an important step in maintaining the quality of cell labeling and cell activity."

####

For more information, please click here

Contacts:
Robert Miranda


Dr. Wen-Li Chen
MOE Key Laboratory of Laser Life Science
South China Normal University
Guangzhou, China
Tel. +86-20-85224007

Copyright © CTCEABR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Imaging

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic