Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Abstract:
A team of researchers from three medical institutions in Guangzhou, China, have found that iron oxide nanoparticles (INOPS) are a useful contrast agent for in vivo magnetic resonance tracking of transplanted human endothelial cells. However, the impact of INOPS on the cells varies with a number of factors including the INOPS load. They found that the percentage of iron-labeled cells was significantly lower after 48 hours post-transplantation than at 24 hours post-transplantation. They also found that high INOPS concentration can affect cell activity. High INOPS concentration can induce cell death (apoptosis).

Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Putnam Valley, NY | Posted on December 20th, 2012

Their study is published in the current issue of Cell Transplantation (21:9), now freely available on-line at /www.ingentaconnect.com/content/cog/ct/.

"A good MRI contrast agent must possess a number of features," said study co-author Dr. Wen-Li Chen, at South China Normal University's MOE Key Laboratory of Laser Life Science. "Those features are: low toxicity and good stabilization, high sensitivity, good solubility and the ability to remain in the target cell for a long time. In our study, we found that INOPS are sensitive and can perturb the static magnetic field and provide a string change in MR signals."

Citation: Yang, F-Y.; Yu, M-X.; Zhou, Q.; Chen, W-L.; Gao, P.; Huang, Z. Effects of Iron Oxide Nanoparticle Labeling on Human Endothelial Cells. Cell Transplant. 21(9):1805-1820; 2012.

The Coeditors-in-chief for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at
The researchers found that the INOPS could be taken up by the cell rather than adhering to the exterior of the cell membrane. However, they also found that a proportional relationship might exist between the number of labeled cells and signal intensity.

"For the first time, we identified that autophagy death could take place at high INOPS loading concentrations," said the researchers.

They also discovered that an increased incubation time, from 24 to 48 hours, did not increase cellular uptake of INOPS and that the percentage of labeled cells declined after 24 hours to be significantly lower by 48 hours.

"It is possible that when the intracellular iron becomes saturated, the particles may start to be expelled out of cells," they concluded. "Thus, the determination of optimal loading concentration is an important step in maintaining the quality of cell labeling and cell activity."

####

For more information, please click here

Contacts:
Robert Miranda


Dr. Wen-Li Chen
MOE Key Laboratory of Laser Life Science
South China Normal University
Guangzhou, China
Tel. +86-20-85224007

Copyright © CTCEABR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Imaging

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project