Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Abstract:
A team of researchers from three medical institutions in Guangzhou, China, have found that iron oxide nanoparticles (INOPS) are a useful contrast agent for in vivo magnetic resonance tracking of transplanted human endothelial cells. However, the impact of INOPS on the cells varies with a number of factors including the INOPS load. They found that the percentage of iron-labeled cells was significantly lower after 48 hours post-transplantation than at 24 hours post-transplantation. They also found that high INOPS concentration can affect cell activity. High INOPS concentration can induce cell death (apoptosis).

Study reports iron oxide nanoparticles effective for labeling human endothelial cells Loading cells too heavily with INOPS can cause cell: death

Putnam Valley, NY | Posted on December 20th, 2012

Their study is published in the current issue of Cell Transplantation (21:9), now freely available on-line at /www.ingentaconnect.com/content/cog/ct/.

"A good MRI contrast agent must possess a number of features," said study co-author Dr. Wen-Li Chen, at South China Normal University's MOE Key Laboratory of Laser Life Science. "Those features are: low toxicity and good stabilization, high sensitivity, good solubility and the ability to remain in the target cell for a long time. In our study, we found that INOPS are sensitive and can perturb the static magnetic field and provide a string change in MR signals."

Citation: Yang, F-Y.; Yu, M-X.; Zhou, Q.; Chen, W-L.; Gao, P.; Huang, Z. Effects of Iron Oxide Nanoparticle Labeling on Human Endothelial Cells. Cell Transplant. 21(9):1805-1820; 2012.

The Coeditors-in-chief for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at
The researchers found that the INOPS could be taken up by the cell rather than adhering to the exterior of the cell membrane. However, they also found that a proportional relationship might exist between the number of labeled cells and signal intensity.

"For the first time, we identified that autophagy death could take place at high INOPS loading concentrations," said the researchers.

They also discovered that an increased incubation time, from 24 to 48 hours, did not increase cellular uptake of INOPS and that the percentage of labeled cells declined after 24 hours to be significantly lower by 48 hours.

"It is possible that when the intracellular iron becomes saturated, the particles may start to be expelled out of cells," they concluded. "Thus, the determination of optimal loading concentration is an important step in maintaining the quality of cell labeling and cell activity."

####

For more information, please click here

Contacts:
Robert Miranda


Dr. Wen-Li Chen
MOE Key Laboratory of Laser Life Science
South China Normal University
Guangzhou, China
Tel. +86-20-85224007

Copyright © CTCEABR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Imaging

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Nanomedicine

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project