Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2 problems in chemical catalysis solved: University of Jyvaskyla Department of Chemistry and NanoScience Center

This image shows a novel bifunctional catalyst for the Mannich reaction.

Credit: Professor Petri Pihko
This image shows a novel bifunctional catalyst for the Mannich reaction.

Credit: Professor Petri Pihko

Abstract:
The research group of Professor Petri Pihko at the Department of Chemistry and the NanoScience Center of the University of Jyväskylä has solved two acute problems in chemical catalysis. The research has been funded by the Academy of Finland.

2 problems in chemical catalysis solved: University of Jyvaskyla Department of Chemistry and NanoScience Center

Finland | Posted on December 20th, 2012

In the first project, the researchers designed a novel intramolecularly assisted catalyst for the synthesis of beta amino acids. Previously published catalysts work only with aromatic side chains in the imines, but the new catalyst designed at Jyväskylä does not have this limitation. The new method might find uses in the synthesis of beta amino acids, which are important building blocks for chemical biology. For the understanding of the catalytic mechanism and design of the catalyst, the researchers collaborated with the group of Imre Pápai (Hungarian Academy of Sciences, computational studies) and Academy Professor Kari Rissanen (Jyväskylä, X-ray characterisation of catalysts).

In the second project, the researchers identified a completely new mechanism for the amine-catalysed Michael addition reaction between aldehydes and nitroalkenes. The mechanism has been a source of intense discussion within the scientific community, with the groups of Professor Yujiro Hayashi (Tokyo), Professor Donna Blackmond (La Jolla, USA) and Professor Dieter Seebach (ETH, Switzerland) each presenting different possible mechanisms.

The new model proposed by the Pihko and Papai groups includes a new species, a six-membered ring, as the key on-cycle intermediate that is protonated in the rate-determining step. The work is a combination of computational and experimental studies that complement each other in understanding the mechanism and demonstrate how difficult mechanistic puzzles can be solved by joining the forces of both approaches.

The research results have been published in Angewandte Chemie.

####

For more information, please click here

Contacts:
Petri Pihko

358-505-289-132

Copyright © Academy of Finland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Download article:

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project