Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2 problems in chemical catalysis solved: University of Jyvaskyla Department of Chemistry and NanoScience Center

This image shows a novel bifunctional catalyst for the Mannich reaction.

Credit: Professor Petri Pihko
This image shows a novel bifunctional catalyst for the Mannich reaction.

Credit: Professor Petri Pihko

Abstract:
The research group of Professor Petri Pihko at the Department of Chemistry and the NanoScience Center of the University of Jyväskylä has solved two acute problems in chemical catalysis. The research has been funded by the Academy of Finland.

2 problems in chemical catalysis solved: University of Jyvaskyla Department of Chemistry and NanoScience Center

Finland | Posted on December 20th, 2012

In the first project, the researchers designed a novel intramolecularly assisted catalyst for the synthesis of beta amino acids. Previously published catalysts work only with aromatic side chains in the imines, but the new catalyst designed at Jyväskylä does not have this limitation. The new method might find uses in the synthesis of beta amino acids, which are important building blocks for chemical biology. For the understanding of the catalytic mechanism and design of the catalyst, the researchers collaborated with the group of Imre Pápai (Hungarian Academy of Sciences, computational studies) and Academy Professor Kari Rissanen (Jyväskylä, X-ray characterisation of catalysts).

In the second project, the researchers identified a completely new mechanism for the amine-catalysed Michael addition reaction between aldehydes and nitroalkenes. The mechanism has been a source of intense discussion within the scientific community, with the groups of Professor Yujiro Hayashi (Tokyo), Professor Donna Blackmond (La Jolla, USA) and Professor Dieter Seebach (ETH, Switzerland) each presenting different possible mechanisms.

The new model proposed by the Pihko and Papai groups includes a new species, a six-membered ring, as the key on-cycle intermediate that is protonated in the rate-determining step. The work is a combination of computational and experimental studies that complement each other in understanding the mechanism and demonstrate how difficult mechanistic puzzles can be solved by joining the forces of both approaches.

The research results have been published in Angewandte Chemie.

####

For more information, please click here

Contacts:
Petri Pihko

358-505-289-132

Copyright © Academy of Finland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Download article:

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Chemistry

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project