Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A nanoscale window to the biological world: In situ molecular microscopy provides a gateway to imaging dynamic systems in structural biology

A novel microfluidics platform allowed viewing of structural details of rotavirus double-layered particles; the 3-D graphic of the virus, in purple, was reconstructed from data gathered by the new technique.

Credit: Virginia Tech
A novel microfluidics platform allowed viewing of structural details of rotavirus double-layered particles; the 3-D graphic of the virus, in purple, was reconstructed from data gathered by the new technique.

Credit: Virginia Tech

Abstract:
If the key to winning battles is knowing both your enemy and yourself, then scientists are now well on their way toward becoming the Sun Tzus of medicine by taking a giant step toward a priceless advantage - the ability to see the soldiers in action on the battlefield.

A nanoscale window to the biological world: In situ molecular microscopy provides a gateway to imaging dynamic systems in structural biology

Blacksburg, VA | Posted on December 20th, 2012

Investigators at the Virginia Tech Carilion Research Institute have invented a way to directly image biological structures at their most fundamental level and in their natural habitats. The technique is a major advancement toward the ultimate goal of imaging biological processes in action at the atomic level.

"It's sort of like the difference between seeing Han Solo frozen in carbonite and watching him walk around blasting stormtroopers," said Deborah Kelly, an assistant professor at the VTC Research Institute and a lead author on the paper describing the first successful test of the new technique. "Seeing viruses, for example, in action in their natural environment is invaluable."

The technique involves taking two silicon-nitride microchips with windows etched in their centers and pressing them together until only a 150-nanometer space between them remains. The researchers then fill this pocket with a liquid resembling the natural environment of the biological structure to be imaged, creating a microfluidic chamber.

Then, because free-floating structures yield images with poor resolution, the researchers coat the microchip's interior surface with a layer of natural biological tethers, such as antibodies, which naturally grab onto a virus and hold it in place.

In a recent study in Lab on a Chip, Kelly joined Sarah McDonald, also an assistant professor at the VTC Research Institute, to prove that the technique works.

McDonald provided a pure sample of rotavirus double-layered particles for the study.

"What's missing in the field of structural biology right now is dynamics - how things move in time," said McDonald. "Debbie is developing technologies to bridge that gap, because that's clearly the next big breakthrough that structural biology needs."

Rotavirus is the most common cause of severe diarrhea among infants and children. By the age of 5, nearly every child in the world has been infected at least once. And although the disease tends to be easily managed in the developed world, in developing countries rotavirus kills more than 450,000 children a year.

At the second step in the pathogen's life cycle, rotavirus sheds its outer layer, which allows it to enter a cell, and becomes what is called a double-layered particle. Once its second layer is exposed, the virus is ready to begin using the cell's own infrastructure to produce more viruses. It was the viral structure at this stage that the researchers imaged in the new study.

Kelly and McDonald coated the interior window of the microchip with antibodies to the virus. The antibodies, in turn, latched onto the rotaviruses that were injected into the microfluidic chamber and held them in place. The researchers then used a transmission electron microscope to image the prepared slide.

The technique worked perfectly.

The experiment gave results that resembled those achieved using traditional freezing methods to prepare rotavirus for electron microscopy, proving that the new technique can deliver accurate results.

"It's the first time scientists have imaged anything on this scale in liquid," said Kelly.

The next step is to continue to develop the technique with an eye toward imaging biological structures dynamically in action.

Specifically, McDonald is looking to understand how rotavirus assembles, so as to better know and develop tools to combat this particular enemy of children's health.

The researchers said their ongoing collaboration is an example of the cross-disciplinary work that is becoming a hallmark of the VTC Research Institute.

"It's an ideal collaboration because Sarah provides a phenomenal model system by which we can develop new technologies to move the field of microstructural biology forward," said Kelly.

"It's very win-win," McDonald added. "While the virus is a great tool for Debbie to develop her techniques, her technology is critical for allowing me to understand how this deadly virus assembles and changes dynamically over time."

The paper "Visualizing viral assemblies in a nanoscale biosphere" was published online and will appear in a 2013 edition of Lab on a Chip.

The authors are Brian Gilmore, a research associate at the VTC Research Institute; Shannon Showalter, a research assistant at the VTC Research Institute; Madeline Dukes, an applications scientist at Protochips; Justin Tanner, a postdoctoral associate at the VTC Research Institute; Andrew Demmert, a student at the Virginia Tech Carilion School of Medicine; McDonald, in addition to her position at the VTC Research Institute, is an assistant professor of biomedical sciences and pathobiology in the Virginia-Maryland Regional College of Veterinary Medicine; and Kelly, in addition to her position at the VTC Research Institute, is an assistant professor of biological sciences in Virginia Tech's College of Science.

This article was written by Ken Kingery.

####

For more information, please click here

Contacts:
Paula Byron

540-526-2027

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Imaging

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Agilent Technologies Announces Fourth NanoMeasure Scientific Symposium: National Center for Nanoscience and Technology in Beijing to Host Event April 10th, 2014

Microfluidics/Nanofluidics

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

Heat-Based Technique Offers New Way to Measure Microscopic Particles March 13th, 2014

New partnership between Malvern Instruments and RheoSense brings m-VROCi to industrial markets February 28th, 2014

Dolomite introduces groundbreaking microfluidic system for high throughput droplet microfluidics February 27th, 2014

Lab-on-a-chip

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

Nanomedicine

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Discoveries

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Tools

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE