Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Long-wavelength laser will be able to take medicine fingerprints

Cross-section of a prototype pFEL, with the free electron source on the right and the photonic crystal inside the red part.
Cross-section of a prototype pFEL, with the free electron source on the right and the photonic crystal inside the red part.

Abstract:
A laser capable of working in the terahertz range - that of long-wavelength light from the far infrared to 1 millimetre - enables the ‘fingerprint' of, say, a drug to be examined better than can be done using chemical analysis. To achieve this, PhD student Thomas Denis of the University of Twente's MESA+ Institute for Nanotechnology has combined the best of two worlds, a free electron source and photonic crystals. The result: greater flexibility and a compact laser.

Long-wavelength laser will be able to take medicine fingerprints

Enschede, Netherlands | Posted on December 20th, 2012

A terahertz laser is capable of showing the molecular structure of, say, a drug, because the laser beam it produces is at wavelengths suitable for examining molecular and atomic bonds. This enables more spatial information to be obtained than from chemical analysis, a detailed fingerprint. To date, however, the limitation has been that lasers of this type are restricted to particular wavelengths, e.g. because the source of the laser light is a semiconductor, in which electrons can only take on fixed energy states, hence only a limited number of ‘colours' of light can be produced.

Free electrons

In a free electron laser the electrons are not restricted to fixed states, as are electrons in a classic cathode ray tube. So Denis thought, why not combine a free electron source with a ‘photonic crystal'? This is a structure with lot of tiny ‘posts' that together slow down the incident light and turn it into a coherent beam. Photonic crystals can be created at micro level, e.g. for a lab-on-a-chip, or on a much larger scale. The dimensions and shape of the crystal determine the rough wavelength region, and the precise wavelength can be set and adjusted by changing the speed of the electrons being fired at it. This combination is known as a ‘photonic free-electron laser' or pFEL.

Looking inside the crystal

Existing terahertz lasers also have the disadvantage that they are very large, big enough to fill a room. Thanks to the use of photonic crystals the pFEL that Denis has designed is not much bigger than a domestic microwave oven and can still provide high power despite its small size. He has also found a special way of ‘looking' inside a photonic crystal - something that is not normally possible. By interfering slightly with the wavelength pattern in the crystal using a tiny metal ball the actual pattern can be measured.

Thomas Denis (Ahaus, 1981) received his PhD on 14 December for his thesis Theory and Design of Microwave Photonic Free-Electron Lasers. He carried out his research in Prof. Klaus Boller's Laser Physics and Non-linear Optics Group. The thesis, or the summary, is available in digital form on request.

####

For more information, please click here

Contacts:
P.O. Box 217
7500 AE Enschede, Netherlands
053-489 9111
053-489 2000


Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nanomedicine

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Tools

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Photonics/Optics/Lasers

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project