Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers from ICFO use quantum physics to observe delicate systems: Schrödinger's cat has a light touch

Cat
Cat

Abstract:
A paper published in Nature Photonics introduces a new way to observe very delicate bodies based on quantum physics. Researchers from the Institute of Photonic Sciences (ICFO) have shown that groups of photons organized in certain quantum states can gently explore the properties of objects in a non-invasive way. The results overcome for the first time a limit imposed by quantum mechanics, and may permit the observation of unknown properties of ultra-sensitive objects such as individual atoms or living cells.

Researchers from ICFO use quantum physics to observe delicate systems: Schrödinger's cat has a light touch

Barcelona, Spain | Posted on December 19th, 2012

Light is used in many fields of science to obtain precise information without damaging the subject matter. In biology, for instance, living cells can be visualized using optical microscopes. The optical microscope uses a photon beam to penetrate the cell and give a picture. Due to the high transparency of the cell, most of the photons pass through without leaving a trace. A small fraction, however, is absorbed and causes cell damage, in much the same way that the sun causes sunburn. Certain cells are more delicate, and the damage caused by photons can be mortal. Until now in these circumstances, scientists have limited the amount of light used in order to avoid damaging the cell, but the cost was a lower quality image.

Quantum physics could dramatically change this scenario. The research group led by ICREA Professor at ICFO Morgan Mitchell has shown that photons prepared in certain quantum states can provide more information, giving a clearer picture while causing less damage. These states are difficult to imagine: they require that all photons be polarized in one direction and also in the opposite direction, being in two different states at once. This is similar to a thought experiment described by Erwin Schrödinger in 1935. He imagined a hypothetical cat in a "superposition of states", being simultaneously alive and dead at the same time. Two years ago, researchers in Mitchell's group proposed a method for producing these exotic states. In this article, they demonstrate the experimental realization of this quantum state and its increased effectiveness for imaging very delicate objects.

The researchers have chosen a cloud of rubidium atoms for their experiment. This cloud of rubidium serves as a model system: "Atoms of rubidium are a good model because on one hand, they share the same characteristics as the cells in relation to the information obtained and damage caused and, on the other hand, we have very precise knowledge of their characteristics" explains Mitchell.

In the experiment, scientist prepared pairs of photons in a "Schrödinger cat" state, and then sent them through a cloud of atoms, measuring their polarization on the way out. In this way, they were able to deduce the number of atoms in the cloud and the magnetic field of their surroundings. At the same time, they were able to assess the damage, i.e. the number of photons absorbed by the cloud. With the Schrödinger cat, the ratio between information obtained and damage caused exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing. "Overcoming this limit provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Professor Mitchell.

####

About ICFO
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia. ICFO is a center of research excellence devoted to the sciences and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts more than 250 researchers and PhD students working in more than 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO researchers publish in the most prestigious journals and collaborate with a wide range of companies around the world. The institute actively promotes the creation of spin-off companies by ICFO researchers.

For more information, please click here

Contacts:
Oficina de Mitjans de Comunicació OMC
+34 93 401 61 43

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow us Twitter:

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Physics

Thinnest feasible membrane produced April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Quantum nanoscience

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos April 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE