Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > City Tech Professor Helps Discover Groundbreaking Virus Detection Method

Abstract:
Vasily Kolchenko, associate professor of biological sciences at New York City College of Technology (City Tech), is a key player on a research team that recently made a breakthrough with enormous potential significance for the treatment of serious diseases.

City Tech Professor Helps Discover Groundbreaking Virus Detection Method

Brooklyn, NY | Posted on December 19th, 2012

Their work has made it possible, for the first time, to detect the smallest virus particle. Since even one viral particle can represent a deadly threat, the research likely will make an important contribution to ongoing research on early detection of such diseases as AIDS and cancer.

Until the research team announced their discovery this year in Applied Physics Letters (July 27, 2012, American Institute of Physics), no instrument or methodology had been successful in reliably and accurately detecting a single virus particle, which is in the size range of a nanoparticle. (About 80,000 nanoparticles side by side would have the same width as a human hair.)

The research will potentially have an immense impact on the general public, aiding disease detection at its earliest stage when fewer pathogens are present and medical intervention can be most effective. This new approach also has possible applications in the identification of numerous molecules, especially proteins, which are important for drug development research, both as the targets and the treatments.

While scientists have long used microscopes to view objects as small as bacteria, viruses are much smaller. Even the most sensitive electron microscopes, which are cumbersome, expensive and difficult to operate, cannot guarantee detection of these tiny particles.

The team's breakthrough involved adding a nano-antenna to the light-sensing device to enhance the signal. "The idea that light can ‘sense' the presence of nanoparticles and respond to their arrival was groundbreaking," Dr. Kolchenko says.

"Since all the deadliest viruses and most interesting biological molecules -- proteins and DNA -- belong to the nano world, our research proved truly innovative, and its promise is almost unlimited in terms of detecting pretty much everything of interest in life sciences," he adds.

Dr. Kolchenko, who has a medical degree, a doctorate in physiology and a master's degree in mathematics from Kiev University, provided a unique combination of expertise in bioinformatics, mathematics and medicine that was integral to the project's success in isolating the smallest individual RNA virus, MS2.

"I first became interested in pursuing research on using light for the detection and measurement of the tiniest biological and non-living objects when I heard a talk on biosensors that Professor Stephen Arnold of Polytechnic/NYU gave at City Tech," says Dr. Kolchenko, who teaches biology at City Tech and bioinformatics at Polytechnic.

The two-year research project, funded for $400,000 by the National Science Foundation, has been conducted at Polytechnic/NYU's Micro-Particle Laboratory for BioPhotonics, under the direction of Dr. Stephen Arnold, in collaboration with the physics departments of Fordham University and Hunter College, and the biological sciences department of City Tech. Polytechnic/NYU has applied for a utility patent for the team's ground-breaking innovation.

Prior to the latest NSF project, ten years of laboratory research by Dr. Kolchenko and his colleagues resulted in the development of a simple, low-cost design for more sensitive, miniature devices that could detect and measure viruses, proteins and DNA in real time. From 2005 through 2008, the team published papers detailing its progress in such prestigious journals as Applied Physics Letters, Faraday Discussions and Proceedings of the National Academy of Sciences.

"One of the ultimate goals is to develop portable, inexpensive, easy to use and highly sensitive devices for healthcare and research settings," says Dr. Kolchenko. "This research opens the door for highly sensitive detection and measurement of biological and other nanoparticles that are essential in molecular biology, clinical medicine and diagnostics, epidemiology, ecology, nanotechnology and other fields."

Further research is planned, according to Dr. Kolchenko. "Since single protein molecules are much smaller than viral particles, their detection will be the ultimate test of the method," he says. "We hope after some additional research and development, our method will allow for single protein detection as well."

Such research could enable the earlier screening of cancer markers, which are protein molecules produced when cancer grows. Currently, there are several markers that could be potentially detected by the new biosensor; early detection of these markers could allow treatment to begin sooner, enhancing cancer survival rates.

Says Dr. Kolchenko, "We have merely scratched the surface of what is likely to be possible."

####

About The City University of New York (CUNY)
New York City College of Technology (City Tech) of The City University of New York (CUNY) is the largest public college of technology in New York State. Located at 300 Jay Street in Downtown Brooklyn, the College enrolls more than 16,000 students in 63 baccalaureate, associate and specialized certificate programs.

For more information, please click here

Contacts:
Michele Forsten

Copyright © The City University of New York (CUNY)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

ANU invention to inspire new night-vision specs December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project