Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technology allows scientists to capture and preserve cancer cells circulating in the bloodstream

A new-generation nano-platform capable of capturing circulating tumor cells and releasing them at reduced temperature.
A new-generation nano-platform capable of capturing circulating tumor cells and releasing them at reduced temperature.

Abstract:
Scientists from the RIKEN Advanced Science Institute in Japan and University of California Los Angeles report a new nanoscale Velcro-like device that captures and releases tumor cells that have broken away from primary tumors and are circulating in the bloodstream.This new nanotechnology could be used for cancer diagnosis and give insight into the mechanisms of how cancer spreads throughout the body. The device provides a convenient and non-invasive alternative to biopsy, the current method for diagnosis of metastatic cancer. It could enable doctors to detect tumor cells that circulate in cancer patients' blood well before they subsequently colonize as tumors in other organs. The device also enables researchers to keep the tumor cells alive and subsequently study them.

New technology allows scientists to capture and preserve cancer cells circulating in the bloodstream

Wako, Japan | Posted on December 17th, 2012

The device was developed by a team led by Hsiao-hua Yu from the RIKEN Advanced Science Institute in Japan and Hsian-Rong Tseng from the Department of Molecular and Medical Pharmacology at the University of California Los Angeles, in research published online today in the journal Advanced Materials.

Similar cell-capture devices have been reported but this technology is unique in that it is capable of catching the tumor cells with great efficiency and releasing them with great cell viability. Blood is passed through the device like a filter that contains a molecule capable of adhering to tumor cells like Velcro and separating them with efficiency ranging from 40% to 70%. The cancer cells are retained by tiny temperature-responsive polymer brushes inside the device. At 37 degrees Celsius, these polymer brushes stick to the tumor cells, but when cooled to 4 degrees Celsius, they release them, allowing scientists to examine the cells.

"Until now, most devices have demonstrated the ability to capture circulating tumor cells with high efficiency. However, it is equally important to release these captured cells, to preserve and study them in order to obtain insightful information about them. This is the big difference with our device." Explains Hsiao-hua Yu, who led the team that developed the technique to coat the device with polymer brushes.

Full bibliographic information

Shuang Hou, Haichao Zhao, Libo Zhao, Qinglin Shen, Kevin S. Wei, Daniel Y. Suh, Aiko Nakao, Bin Xiong, Shyh-Chyang Luo,Hsian-Rong Tseng,Hsiao-hua Yu "Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures." Advanced Materials, 2012

####

About RIKEN
RIKEN is Japanís flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKENís advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world. Reach us on Twitter: @rikenresearch

About the RIKEN Advanced Science Institute

The RIKEN Advanced Science Institute (ASI) is an interdisciplinary research institute devoted to fostering creative, curiosity-driven basic research and sowing the seeds for innovative new projects. With more than 700 full-time researchers, the ASI acts as RIKEN's research core, supporting inter-institutional and international collaboration and integrating diverse scientific fields including physics, chemistry, engineering, biology and medical science.

For more information, please click here

Contacts:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225

Or
Shaun Mason
Media Relations Director
Jonsson Comprehensive Cancer Center
UCLA
Broad Stem Cell Research Center
UCLA
Direct line: +1 - 310-206-2805

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Nanomedicine

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Tools

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ĎBringing the Nanoworld Togetherí in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic