Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stretchable electronics: Professor works to develop power sources for flexible, stretchable electronics

This image shows a fully stretchable supercapacitor composed of carbon nanotube macrofilms, a polyurethane membrane separator and organic electrolytes.
This image shows a fully stretchable supercapacitor composed of carbon nanotube macrofilms, a polyurethane membrane separator and organic electrolytes.

Abstract:
Electronic devices become smaller, lighter, faster and more powerful with each passing year. Currently, however, electronics such as cell phones, tablets, laptops, etc., are rigid. But what if they could be made bendable or stretchy? According to the University of Delaware's Bingqing Wei, stretchable electronics are the future of mobile electronics, leading giants such as IBM, Sony and Nokia to incorporate the technology into their products.

Stretchable electronics: Professor works to develop power sources for flexible, stretchable electronics

Newark, DE | Posted on December 15th, 2012

Beyond traditional electronics, potential stretchable applications include biomedical, wearable, portable and sensory devices, such as cyber skin for robotic devices and implantable electronics.

"Advances in soft and stretchable substrates and elastomeric materials have given rise to an entirely new field," says Wei, a mechanical engineering professor at UD.

But even if scientists can engineer stretchable electronics - what about their energy source?

"Rechargeable and stretchable energy storage devices, also known as supercapacitors, are urgently needed to complement advances currently being made in flexible electronics," explains Wei.

Wei's research group at the University is making significant progress in developing scalable, stretchable power sources for this type of application using carbon nanotube macrofilms, polyurethane membranes and organic electrolytes.

This, he says, requires new thinking about materials processing and device manufacturing to maximize energy storage without compromising energy resources.

To reveal a stretchable supercapacitator's true performance, the Wei group examined the system's electrochemical behavior using buckled single-wall nanotube (SWNT) electrodes and an elastomeric separator.

According to Wei, the supercapacitor developed in his lab achieved excellent stability in testing and the results will provide important guidelines for future design and testing of this leading-edge energy storage device.

As they work to refine the technology, Wei has filed a provisional patent to protect his team's research. The work was recently published in Nano Letters, a journal of the American Chemical Society.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
Andrea Boyle Tippett

302-831-1421

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Flexible Electronics

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Electronics you can wrap around your finger: A new multiferroric film keeps its electric and magnetic properties even when highly curved, paving the way for potential uses in wearable devices February 10th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Chip Technology

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Discoveries

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Patents/IP/Tech Transfer/Licensing

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE