Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dreidel-like dislocations lead to remarkable properties: Rice University theory predicts formation of conductive sub-nano ‘wires’ in two-dimensional materials

Animated illustration show the precise arrangement of atoms in dislocations in two-dimensional molybdenum/sulfur. Dislocations happen when two growing blooms of material come together at different angles in chemical vapor deposition. At a specific angle, the lines along which these dislocations form can become conductive. (Xiaolong Zou/Yakobson Lab)
Animated illustration show the precise arrangement of atoms in dislocations in two-dimensional molybdenum/sulfur. Dislocations happen when two growing blooms of material come together at different angles in chemical vapor deposition. At a specific angle, the lines along which these dislocations form can become conductive.

(Xiaolong Zou/Yakobson Lab)

Abstract:
A new material structure predicted at Rice University offers the tantalizing possibility of a signal path smaller than the nanowires for advanced electronics now under development at Rice and elsewhere.

Dreidel-like dislocations lead to remarkable properties: Rice University theory predicts formation of conductive sub-nano ‘wires’ in two-dimensional materials

Houston, TX | Posted on December 15th, 2012

Theoretical physicist Boris Yakobson and postdoctoral fellow Xiaolong Zou were investigating the atomic-scale properties of two-dimensional materials when they found to their surprise that a particular formation, a grain boundary in metal disulfides, creates a metallic - and therefore conducting - path only a fraction of a nanometer wide.

That's basically the width of a chain of atoms, Yakobson said.

The discovery reported this week in the American Chemical Society journal Nano Letters sprang from an investigation of how atoms energetically relate to each other and form topological defects in two-dimensional semiconductors. In recent work, Yakobson's group has analyzed defects in graphene, the single-atom sheet of carbon that is under intense scrutiny by labs around the world.

But flat graphene has no band gap; electrons flow straight through. "There is a lot of effort to open a gap in graphene, but this is not easy," said Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry. "People are trying different ways, but none of them are straightforward. This motivated the search for other two-dimensional materials."

Molybdenum/sulfur (or tungsten/sulfur) materials are becoming interesting to scientists because they have a useful natural band gap, about two electron volts in the case of molybdenum/sulfur. And while they are technically two-dimensional materials, the energies at play force their atoms into a staggered arrangement.

"It's more complex than graphene," Yakobson said. "There's a layer of metal in the middle, with sulfur atoms above and below, but they're fully connected by covalent bonds in a honeycomb lattice, so it's one compound."

Chemical vapor deposition is typically used to grow such material; under high temperatures the atoms (like carbon for graphene) fall into line and form sheets. But when two such blooms appear and they meet, they don't necessarily line up. Where they merge, they form what are called "grain boundaries," akin to grains in wood that join at awkward angles. (Think of a branch meeting a tree trunk.) Those grain boundaries affect the electrical properties of the merged material.

Zou calculated those properties based on the atomic energies of the elements. In looking at the elemental bonds, the researchers found the expected "dislocations" where the energies force atoms out of their regular patterns. "Where the sheets meet, they cannot have an ideal lattice structure, so they have these stitches, the dislocations. Each grain boundary is just a series of these dislocations," Yakobson said.

It was only coincidence that the dislocations took on dreidel-like shapes for a paper published during Hanukkah, he said.

"We found order in this complexity and chaos, the exact structures that are possible at the grain boundaries and the dislocations types," he said.

The growing molybdenum/sulfur sheets can meet at any angle, and though the sheets are semiconducting, the boundaries between them generally stop electrical signals in their tracks. But at one particular angle — 60 degrees — the periodic dislocations are close enough to pass signals on from one to the next along the length of the boundary. "Basically, they're metallic in this direction," Yakobson said.

"So in the middle of these domains of semiconducting material, you have this boundary line that carries current in one direction, like a wire. And it's only a few angstroms wide," he said.

"Metal disulfides may be promising for future electronic devices based on materials with reduced dimensions," Zou said. "It is important to understand the effects of topological defects on the electronic properties as we push toward post-silicon devices."

Yuanyue Liu, a graduate student in Yakobson's group, is a co-author of the paper.

A U.S. Army Research Office Multidisciplinary University Research Initiative grant and the National Science Foundation (NSF) supported the research. Computations were performed at the NSF-funded Data Analysis and Visualization Cyberinfrastructure at Rice.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/AboutRice.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Chip Technology

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Military

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Linking superconductivity and structure May 28th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project