Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reality check for DNA nanotechnology: Lowering barriers to DNA-based nanomanufacturing

This 3-D print shows a DNA-based structure designed to test a critical assumption -- that such objects could be realized, as designed, with subnanometer precision. This object is a relatively large, three-dimensional DNA-based structure, asymmetrical to help determine the orientation, and incorporating distinctive design motifs. Subnanometer-resolution imaging with low-temperature electron microscopy enabled researchers to map the object -- which comprises more than 460,000 atoms -- with subnanometer-scale detail.

Credit: Dietz Lab, TU Muenchen
This 3-D print shows a DNA-based structure designed to test a critical assumption -- that such objects could be realized, as designed, with subnanometer precision. This object is a relatively large, three-dimensional DNA-based structure, asymmetrical to help determine the orientation, and incorporating distinctive design motifs. Subnanometer-resolution imaging with low-temperature electron microscopy enabled researchers to map the object -- which comprises more than 460,000 atoms -- with subnanometer-scale detail.

Credit: Dietz Lab, TU Muenchen

Abstract:
Two major barriers to the advancement of DNA nanotechnology beyond the research lab have been knocked down. This emerging technology employs DNA as a programmable building material for self-assembled, nanometer-scale structures. Many practical applications have been envisioned, and researchers recently demonstrated a synthetic membrane channel made from DNA. Until now, however, design processes were hobbled by a lack of structural feedback. Assembly was slow and often of poor quality. Now researchers led by Prof. Hendrik Dietz of the Technische Universitaet Muenchen (TUM) have removed these obstacles.

Reality check for DNA nanotechnology: Lowering barriers to DNA-based nanomanufacturing

Munich, Germany | Posted on December 13th, 2012

One barrier holding the field back was an unproven assumption. Researchers were able to design a wide variety of discrete objects and specify exactly how DNA strands should zip together and fold into the desired shapes. They could show that the resulting nanostructures closely matched the designs. Still lacking, though, was the validation of the assumed subnanometer-scale precise positional control. This has been confirmed for the first time through analysis of a test object designed specifically for the purpose. A technical breakthrough based on advances in fundamental understanding, this demonstration has provided a crucial reality check for DNA nanotechnology.

In a separate set of experiments, the researchers discovered that the time it takes to make a batch of complex DNA-based objects can be cut from a week to a matter of minutes, and that the yield can be nearly 100%. They showed for the first time that at a constant temperature, hundreds of DNA strands can fold cooperatively to form an object — correctly, as designed — within minutes. Surprisingly, they say, the process is similar to protein folding, despite significant chemical and structural differences. "Seeing this combination of rapid folding and high yield," Dietz says, "we have a stronger sense than ever that DNA nanotechnology could lead to a new kind of manufacturing, with a commercial, even industrial future." And there are immediate benefits, he adds: "Now we don't have to wait a week for feedback on an experimental design, and multi-step assembly processes have suddenly become so much more practical."

Atomically precise control

To test the assumption that discrete DNA objects could be assembled as designed with subnanometer precision, TUM biophysicists collaborated with scientists at the MRC Laboratory of Molecular Biology in Cambridge, UK. They produced a relatively large, three-dimensional DNA-based structure, asymmetrical to help determine the orientation, and incorporating distinctive design motifs.

Subnanometer-resolution imaging with low-temperature electron microscopy enabled the researchers to map the object — which comprises more than 460,000 atoms — with subnanometer-scale detail. Because the object incorporates, in effect, a whole library of different design elements, it will also serve as a resource for further study. The results, reported in Proceedings of the National Academy of Sciences, not only demonstrate atomically precise assembly, but also show that such structures, formerly thought to be jelly-like and flexible, are rigid enough to be probed by electron microscopy.

Fast processing, near-100% yields

In contrast, DNA objects with 19 different designs - including plate-like, gear-like, and brick-like shapes - were used for a second series of experiments at TUM, reported in the latest issue of Science. Here the researchers' main focus was on the dynamics of DNA folding and unfolding. The usual self-assembly process is often described as a "one-pot reaction": Strands of DNA that will serve as the template, instructions, and building material for a designed object are placed together at a relatively high temperature where they will remain separate; the temperature is gradually lowered, and somewhere along the line the DNA strands zip together to form the desired structures.

Observing this process in unprecedented detail, the TUM researchers discovered that all of the action takes place within a specific and relatively narrow temperature range, which differs depending on the design of the object. One practical implication is that, once the optimal temperature for a given design has been determined, DNA self-assembly - nanomanufacturing, in essence - could be accomplished through fast processes at constant temperatures. Following up on this lead, the researchers found that they could "mass-produce" objects made from hundreds of DNA strands within minutes instead of days, with almost no defective objects or by-products in the resulting batch.

"Besides telling us that complex DNA objects are manufacturable," Dietz says, "these results suggest something we hardly dared to imagine before - that it might be possible to assemble DNA nanodevices in a cell culture or even within a living cell."

From the viewpoint of fundamental biology, the most intriguing result of these experiments may be the discovery that DNA folding resembles protein folding more closely than anticipated. Chemically and structurally, the two families of biomolecules are quite different. But the researchers observed clearly defined "cooperative" steps in the folding of complex DNA objects, no different in principle from mechanisms at work in protein folding. They speculate that further experiments with self-assembly of designed DNA objects could help to unravel the mysteries of protein folding, which is more complex and less accessible to direct study.

This work was supported by the European Research Council (HD, Starting Grant #256270); the German Research Foundation (DFG) through the Excellence Clusters CIPSM and NIM, the TUM Institute for Advanced Study, and the Collaborative Research Center SFB863; and the Medical Research Council.

Original publications:

Xiao-chen Bai, Thomas G. Martin, Sjors H. W. Scheres, Hendrik Dietz. Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the USA, Dec. 4, 2012, 109 (49) 20012-20017; on-line in PNAS Early Edition, Nov. 19, 2012. DOI: 10.1073/pnas.1215713109

Jean-Philippe J. Sobczak, Thomas G. Martin, Thomas Gerling, Hendrik Dietz. Rapid folding of DNA into nanoscale shapes at constant temperature. Science, vol. 338, issue 6113, pp. 1458-1461. DOI: 10.1126/science.1229919

See also: Martin Langecker, Vera Arnaut, Thomas G. Martin, Jonathan List, Stephan Renner, Michael Mayer, Hendrik Dietz, and Friedrich C. Simmel. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, vol. 338, issue 6109, pp. 932-936. DOI: 10.1126/science.1225624

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Germany's leading universities. It has roughly 480 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university. The university's global presence includes offices in Beijing (People's Republic of China), Boston (USA), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and Sao Paulo (Brazil). The German Institute of Science and Technology (GIST), founded in 2002 in Singapore, is the first research campus of a German university abroad.

For more information, please click here

Contacts:
Patrick Regan

49-089-289-10515

Prof. Hendrik Dietz
Technische Universitaet Muenchen
Physics Dept., Walter Schottky Institute / ZNN
Am Coulombwall 4a, 85748 Garching, Germany
Tel: +49 (0)89 289 11615

Web: bionano.physik.tu-muenchen.de

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project