Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stem cell “sticky spots” recreated by scientists

Scanning electron microscope image of newly developed foam biomaterial with just the right amount of random stickiness so that stem cells can adhere and grow into mature tissue cells.
Scanning electron microscope image of newly developed foam biomaterial with just the right amount of random stickiness so that stem cells can adhere and grow into mature tissue cells.

Abstract:
Randomly distributed sticky spots which are integral to the development of stem cells by maximising adhesion and acting as internal scaffolding have been artificially recreated by experts from the University of Sheffield for the first time.

Stem cell “sticky spots” recreated by scientists

Sheffield, UK | Posted on December 13th, 2012

Using synthetic foam type materials to mimic the natural process - known as the extracellular matrix or ECM - scientists, from the University of Sheffield and University of California San Diego, created the random stickiness required for stem cells to properly adhere.

The findings will better inform researchers across the world of how to make their biomaterials appropriately sticky for stem cells to grow.

Previous attempts to recreate the process have managed only a uniform spread of sticky cells meaning there isn't the maximum hindering the stem cells maturation into tissue cells.

Professor Giuseppe Battaglia of the University's Department of Biomedical Science said: "We used two polymers, one that is sticky and one that is not, which separate from each other in solution. Just like with balsamic vinaigrette, we shook these two polymers up sufficiently to form randomly distributed nano-scopic patches of the sticky material - the balsamic vinegar -in a non-sticky material, just like the olive oil. To put it another way, these two materials phase separate within the foam to give you regions distinctly of one material or the other."

At the appropriate ratio of sticky and non-sticky polymer, the researchers found that it is possible to tune the size and distribution of the foam's adhesive regions: having less sticky polymer in the foam made its adhesive patches smaller and more dispersed, just like in the human body with natural ECM.

Professor Battaglia and Priyalakshmi Viswanathan, who performed most of the experimental work, added: "What was surprising to the team was that when we allowed stem cells to adhere to the foams, we found that random stickiness versus uniform stickiness was required for stem cells to properly adhere. We also found that this is likely necessary for stem cell development into mature tissue cells. In this sense, stem cells are like Goldilocks: the scaffold should not be too sticky or not sticky enough, it must be just right to maximize adhesion, and later, maturation into tissue cells."

The data was published following a collaboration between Professor of Synthetic Biology from Sheffield Giuseppe Battaglia, and Assistant Professor of Bioengineering from San Diego Adam Engler in the Journal of the American Chemical Society and was highlighted in this week's issue Nature.

The work was supported by grants from the National Institutes of Health and Human Frontiers Science Program

####

About University of Sheffield
With nearly 25,000 students from 125 countries, the University of Sheffield is one of the UK’s leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University of Sheffield was named University of the Year in the Times Higher Education Awards 2011 for its exceptional performance in research, teaching, access and business performance. In addition, the University has won four Queen’s Anniversary Prizes (1998, 2000, 2002, and 2007).

These prestigious awards recognise outstanding contributions by universities and colleges to the United Kingdom’s intellectual, economic, cultural and social life. Sheffield also boasts five Nobel Prize winners among former staff and students and many of its alumni have gone on to hold positions of great responsibility and influence around the world. The University’s research partners and clients include Boeing, Rolls-Royce, Unilever, Boots, AstraZeneca, GSK, ICI, Slazenger, and many more household names, as well as UK and overseas government agencies and charitable foundations.

The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge.

For more information, please click here

Contacts:
Paul Mannion
Media Relations Officer
The University of Sheffield

01-142-229-851

Copyright © University of Sheffield

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic