Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stem cell “sticky spots” recreated by scientists

Scanning electron microscope image of newly developed foam biomaterial with just the right amount of random stickiness so that stem cells can adhere and grow into mature tissue cells.
Scanning electron microscope image of newly developed foam biomaterial with just the right amount of random stickiness so that stem cells can adhere and grow into mature tissue cells.

Abstract:
Randomly distributed sticky spots which are integral to the development of stem cells by maximising adhesion and acting as internal scaffolding have been artificially recreated by experts from the University of Sheffield for the first time.

Stem cell “sticky spots” recreated by scientists

Sheffield, UK | Posted on December 13th, 2012

Using synthetic foam type materials to mimic the natural process - known as the extracellular matrix or ECM - scientists, from the University of Sheffield and University of California San Diego, created the random stickiness required for stem cells to properly adhere.

The findings will better inform researchers across the world of how to make their biomaterials appropriately sticky for stem cells to grow.

Previous attempts to recreate the process have managed only a uniform spread of sticky cells meaning there isn't the maximum hindering the stem cells maturation into tissue cells.

Professor Giuseppe Battaglia of the University's Department of Biomedical Science said: "We used two polymers, one that is sticky and one that is not, which separate from each other in solution. Just like with balsamic vinaigrette, we shook these two polymers up sufficiently to form randomly distributed nano-scopic patches of the sticky material - the balsamic vinegar -in a non-sticky material, just like the olive oil. To put it another way, these two materials phase separate within the foam to give you regions distinctly of one material or the other."

At the appropriate ratio of sticky and non-sticky polymer, the researchers found that it is possible to tune the size and distribution of the foam's adhesive regions: having less sticky polymer in the foam made its adhesive patches smaller and more dispersed, just like in the human body with natural ECM.

Professor Battaglia and Priyalakshmi Viswanathan, who performed most of the experimental work, added: "What was surprising to the team was that when we allowed stem cells to adhere to the foams, we found that random stickiness versus uniform stickiness was required for stem cells to properly adhere. We also found that this is likely necessary for stem cell development into mature tissue cells. In this sense, stem cells are like Goldilocks: the scaffold should not be too sticky or not sticky enough, it must be just right to maximize adhesion, and later, maturation into tissue cells."

The data was published following a collaboration between Professor of Synthetic Biology from Sheffield Giuseppe Battaglia, and Assistant Professor of Bioengineering from San Diego Adam Engler in the Journal of the American Chemical Society and was highlighted in this week's issue Nature.

The work was supported by grants from the National Institutes of Health and Human Frontiers Science Program

####

About University of Sheffield
With nearly 25,000 students from 125 countries, the University of Sheffield is one of the UK’s leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University of Sheffield was named University of the Year in the Times Higher Education Awards 2011 for its exceptional performance in research, teaching, access and business performance. In addition, the University has won four Queen’s Anniversary Prizes (1998, 2000, 2002, and 2007).

These prestigious awards recognise outstanding contributions by universities and colleges to the United Kingdom’s intellectual, economic, cultural and social life. Sheffield also boasts five Nobel Prize winners among former staff and students and many of its alumni have gone on to hold positions of great responsibility and influence around the world. The University’s research partners and clients include Boeing, Rolls-Royce, Unilever, Boots, AstraZeneca, GSK, ICI, Slazenger, and many more household names, as well as UK and overseas government agencies and charitable foundations.

The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge.

For more information, please click here

Contacts:
Paul Mannion
Media Relations Officer
The University of Sheffield

01-142-229-851

Copyright © University of Sheffield

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project