Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > JPK reports on the use of AFM and single-cell force spectroscopy at the Interdisciplinary Nanoscience Center at Aarhus University, Denmark

Dr Rikke Meyer of iNANO at Aarhus University, Denmark, with her JPK NanoWizard SPM system: photograph courtesy of Mikal Schlosser, Herlev, DK, www.mikals.dk.
Dr Rikke Meyer of iNANO at Aarhus University, Denmark, with her JPK NanoWizard SPM system:

photograph courtesy of Mikal Schlosser, Herlev, DK, www.mikals.dk.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the research studies of Dr Rikke Meyer who is looking into biofilm formation from bacteria using atomic force microscopy, AFM, and single-cell force spectroscopy.

JPK reports on the use of AFM and single-cell force spectroscopy at the Interdisciplinary Nanoscience Center at Aarhus University, Denmark

Berlin, Germany | Posted on December 11th, 2012

The interdisciplinary Nanoscience Center (iNANO) was formed by various research groups at Aarhus University together with groups from the Faculty of Science at Aalborg University. iNANO comprises facilities for the synthesis of nanostructured and nanopatterned 0D (i.e. nanoparticle), 1D, 2D and 3D materials.

The group of Dr Rikke Meyer works at the interface between microbiology and nanoscience in the quest to understand how bacteria form biofilms and how this may be prevented. AFM and optical microscopy are used to visualize bacterial cells and to study the interaction forces between cells and an abiotic substrate. AFM imaging and single-cell force spectroscopy are excellent tools to visualize detailed structures on the bacterial cell surface and to study how these contribute to cell adhesion to other substrates.

The motivation for using AFM in Dr Meyer's research was firstly to obtain detailed images of bacterial cells without extensive sample preparation. Furthermore, as she is interested in the interactions between bacteria and abiotic surfaces, she and her team use AFM force spectroscopy to quantify these interaction forces. AFM is one of several techniques used in these studies. These also include brightfield microscopy, fluorescence microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy.

Dr Meyer comments on her research and reasons behind her choice of AFM: "The coupling with optical microscopy is no doubt the feature that was most important for me in deciding to go with an AFM from JPK. As a microbiologist, I work with very heterogenous samples and it is not feasible to use AFM imaging to locate the field of interest, as large areas of the sample are often visualized to locate a site of interest. In the combined system, we can use the optical image to locate cells of interest before engaging the AFM for imaging or other measurements."

Continuing, she said, "AFM has mostly been used to study bacterial cells that are isolated in pure culture. However, the vast majority of the bacterial species we know to date have not been isolated and can only be studied in situ. Fluorescence labeling allows a rough identification of bacteria directly in the sample and fluorescence imaging can thus be used to locate cells of interest before AFM imaging begins. The combination of AFM with optical imaging is thus particularly important for the analysis of bacteria in environmental samples."

For more details about JPK's specialist products and applications for the bio and nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook.

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
www.jpk.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Imaging

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanomedicine

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Announcements

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Tools

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Nanobiotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

New-Contracts/Sales/Customers

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE