Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Highly stable graphene-based ultrathin films: a covalent protocol

Abstract:
The unique atomic thick two-dimensional structural feature and outstanding electronic properties of graphene-based materials endow them with fertile opportunities as high-performance active electronic materials or as electrodes in the next generation nanoelectronics. The assembly of graphene-based materials to formulated ultrathin films over large area surface in a controllable manner is one of the most indispensable prerequisites to this end. Great progress has been made in this direction, yet there is much to be investigated to produce graphene-based multilayered films with excellent stability such that the formulated films could withstand the multi-step post-production process in the practical applications.

Highly stable graphene-based ultrathin films: a covalent protocol

Germany | Posted on December 11th, 2012

By taking the advantage of the presence of chemically reactive hydroxyl and epoxide groups on the basal plane of graphene oxide (GO), which is a novel cousin of the pristine graphene, Chinese scientists have now shown how to integrate such highly stable graphene-based multilayered film via a novel covalent-based protocol. Using (3-aminopropyl) trimethoxysilane (APTMS), which has chemically reactive amino and alkoxysilane groups at the opposite ends of the molecule, as a cross-linkage, the scientists demonstrated that GO nanosheets could be firmly immobilized on the hydroxylated solid substrates (for examples quartz, silicon or SiO2/Si wafer etc.) in a layer-by-layer (LBL) manner.

In thus-formulated multilayered (APTMS/GO)N films, the GO nanosheets were not simply stuck to but covalently grown on the substrates owing to the chemical reactions of the amino and alkoxysilane groups of APTMS with the epoxy and hydroxyl groups of GO, respectively (see below).

A thermal annealing treatment at an appropriate temperature could lead to the formation of reduced GO (RGO) films, (APTMS/RGO)N, which could retain their basic covalent structural features very well. The results showed that compared with the conventional LBL GO or RGO films constructed via electrostatic interactions, those assembled via the present covalent protocol, could display much higher stability and reproducibility, wherein the former were destroyed significantly upon a 15 minutes' ultrasonication treatment in water while the latter could survive themselves very well even when they were ultrasonicated sufficiently for 135 minutes (see graphs on the right, and click to magnify). "The excellent stability of our covalent films might provide new opportunities for their practical applications to withstand multi-step post-production, which is always encountered in practice. ", say the researchers. As a preliminary example for the potential application of these covalently assembled films, organic field-effect transistors (OFETs) were fabricated by using the (APTMS/RGO)N films as the source/drain electrodes.

The results showed that when the number of bilayers of the (APTMS/RGO)N films exceeded 2 (ca. 2.7 nm), the devices based on the (APTMS/RGO)N electrodes could display much higher electrical performances than that of the devices using 40 nm Au as electrodes. To generalize and expand this covalent approach, the researchers expect that the use of functional cross-link agents with intrinsic advanced physicochemical properties themselves might provide more opportunities not only for the highly stable and high-performance electrode in OFETs, but also for some other issues, for example chemical and biochemical sensors, electrochemical pseudocapacitor, optoelectronics, high efficiency catalysis, etc. The researchers believe that this covalent protocol might help to develop multilayered graphene-based films with more advanced functions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Graphene

Successful boron-doping of graphene nanoribbon August 27th, 2015

Videos/Movies

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Tantalizing discovery may boost memory technology: Rice University scientists make tantalum oxide practical for high-density devices August 10th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic