Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Highly stable graphene-based ultrathin films: a covalent protocol

Abstract:
The unique atomic thick two-dimensional structural feature and outstanding electronic properties of graphene-based materials endow them with fertile opportunities as high-performance active electronic materials or as electrodes in the next generation nanoelectronics. The assembly of graphene-based materials to formulated ultrathin films over large area surface in a controllable manner is one of the most indispensable prerequisites to this end. Great progress has been made in this direction, yet there is much to be investigated to produce graphene-based multilayered films with excellent stability such that the formulated films could withstand the multi-step post-production process in the practical applications.

Highly stable graphene-based ultrathin films: a covalent protocol

Germany | Posted on December 11th, 2012

By taking the advantage of the presence of chemically reactive hydroxyl and epoxide groups on the basal plane of graphene oxide (GO), which is a novel cousin of the pristine graphene, Chinese scientists have now shown how to integrate such highly stable graphene-based multilayered film via a novel covalent-based protocol. Using (3-aminopropyl) trimethoxysilane (APTMS), which has chemically reactive amino and alkoxysilane groups at the opposite ends of the molecule, as a cross-linkage, the scientists demonstrated that GO nanosheets could be firmly immobilized on the hydroxylated solid substrates (for examples quartz, silicon or SiO2/Si wafer etc.) in a layer-by-layer (LBL) manner.

In thus-formulated multilayered (APTMS/GO)N films, the GO nanosheets were not simply stuck to but covalently grown on the substrates owing to the chemical reactions of the amino and alkoxysilane groups of APTMS with the epoxy and hydroxyl groups of GO, respectively (see below).

A thermal annealing treatment at an appropriate temperature could lead to the formation of reduced GO (RGO) films, (APTMS/RGO)N, which could retain their basic covalent structural features very well. The results showed that compared with the conventional LBL GO or RGO films constructed via electrostatic interactions, those assembled via the present covalent protocol, could display much higher stability and reproducibility, wherein the former were destroyed significantly upon a 15 minutes' ultrasonication treatment in water while the latter could survive themselves very well even when they were ultrasonicated sufficiently for 135 minutes (see graphs on the right, and click to magnify). "The excellent stability of our covalent films might provide new opportunities for their practical applications to withstand multi-step post-production, which is always encountered in practice. ", say the researchers. As a preliminary example for the potential application of these covalently assembled films, organic field-effect transistors (OFETs) were fabricated by using the (APTMS/RGO)N films as the source/drain electrodes.

The results showed that when the number of bilayers of the (APTMS/RGO)N films exceeded 2 (ca. 2.7 nm), the devices based on the (APTMS/RGO)N electrodes could display much higher electrical performances than that of the devices using 40 nm Au as electrodes. To generalize and expand this covalent approach, the researchers expect that the use of functional cross-link agents with intrinsic advanced physicochemical properties themselves might provide more opportunities not only for the highly stable and high-performance electrode in OFETs, but also for some other issues, for example chemical and biochemical sensors, electrochemical pseudocapacitor, optoelectronics, high efficiency catalysis, etc. The researchers believe that this covalent protocol might help to develop multilayered graphene-based films with more advanced functions.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

Graphene

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Videos/Movies

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Sensors

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Nanoelectronics

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

Discoveries

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE