Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rolith Aims To Address The Growing Market For Transparent Electrodes: University of Michigan Office of Technology Transfer grants Rolith exclusive license to make transparent conductive electrodes

Abstract:
Rolith, Inc., the leader in developing advanced nanostructured coatings and devices, today announced that it has received an exclusive license to methods of micro and nano-patterning substrates to make transparent conductive electrodes from the University of Michigan Office of Technology Transfer (U-M Tech Transfer). The licensed process, developed by University of Michigan professor Jay Guo, is based on patterning, which uses continuous optical lithography and offers a low cost, high throughput approach to manufacturing transparent conductive electrodes.

Rolith Aims To Address The Growing Market For Transparent Electrodes: University of Michigan Office of Technology Transfer grants Rolith exclusive license to make transparent conductive electrodes

Pleasanton, CA | Posted on December 10th, 2012

Transparent conductive electrodes are critical to the operation of various optoelectronic devices and are commonly used in high volume applications such as displays, solar cells, "smart" windows and LEDs. Transparent conductive metal oxides, such as indium tin oxide (ITO) are currently used for this purpose. However, there is a growing need to replace ITOs with alternative solutions for reasons of cost, availability and performance.

Recent discoveries regarding the optical properties of nanopatterned metals have opened up an important opportunity to develop a new class of transparent electrodes without relying on ITOs. The nanostructured electrodes technology licensed from U-M Tech Transfer in combination with the existing "Rolling Mask Lithography" capabilities at Rolith offer a convenient and cost effective manufacturing solution to the market.

"We are pleased to be able to partner with Rolith with the license of this exciting technology," says U-M Tech Transfer Executive Director Ken Nisbet. "Partners as Rolith enable our research discoveries to have an impact and fulfill our mission."

"Rolith was fortunate to partner with the University of Michigan and the talented group of scientists headed by Prof. Jay Guo from the early stages of our company growth," said Dr. Boris Kobrin, Founder and CEO of Rolith. "The recent licensing deal gives us a stronghold position in one of the most demanded applications of our core technology."

####

About Rolith, Inc.
Rolith, Inc. is developing advanced nanostructured products for consumer electronics, solar and green building markets using aproprietary nanolithography technology. Rolith was formed by Dr. Boris Kobrin, Prof. Mark Brongersma and Julian Zegelman in 2008 and is currently located in Pleasanton, CA. The company holds a comprehensive patent portfolio in the areas of nanolithography, material deposition and etch methods, and nanophotonic devices. Rolith’s strategic partners include SUSS MicroTec AG and Asahi Glass Company Ltd. Its current investors are DFJ VTB Capital Aurora, a Draper Fisher Jurvetson affiliate fund managed by VTB Capital and AGC America, Inc., the venture arm of Asahi Glass Group.

ABOUT UNIVERSITY OF MICHIGAN:

The University of Michigan spends over $1.2 billion per year on its wide-ranging research initiatives, making it one of the largest, most successful academic research institutions in the world. U-M Tech Transfer, the University unit responsible for transferring research discoveries to business and venture partners, launches an average of 10 start-ups, and signs over 100 agreements with businesses annually. These activities have led to the launch of over 100 new start-up companies since 2000, including HealthMedia, Compendia Biosciences and Arbor Networks, and the adoption of several world-changing technologies, such as the FluMist® inhalable flu vaccine and the IntraLase® LASIK eye surgery system. More on U-M Tech Transfer, including a up-to-date list of technologies available for commercialization, can be found at the U-M Tech Transfer website.

For more information, please click here

Contacts:
5880 W. Las Positas Blvd
Suite 51
Pleasanton, CA 94588 USA
Phone: 1.925.548.6064
Fax: 1.925.415.6064

Copyright © Rolith, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

U-M Tech Transfer website:

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Miniscule amounts of impurities in vacuum greatly affecting OLED lifetime December 30th, 2016

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project