Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Naturally occurring fungus nanoparticles have potential for cancer therapy

Abstract:
Naturally occurring nanoparticles have drawn significant interests from scientific communities, due to their unique properties and promising biocompatibility. Given the earth's rich biological diversity, it is reasonable to believe that these nanoparticles, with various forms and functions, may be produced from a variety of organisms, ranging from microbes to metazoans.

Naturally occurring fungus nanoparticles have potential for cancer therapy

Germany | Posted on December 7th, 2012

Dr. Yongzhong Wang and co-workers in Dr. Mingjun Zhang's group at The University of Tennessee, Knoxville, have worked on naturally occurring nanoparticles using various microbial cultures, and discovered a novel cancer therapeutic from a surprising source: the carnivorous fungus Arthrobotrys oligospora.

This specialized fungus forms adhesive traps for capturing and digesting unlucky nematodes that cross its path. While studying the trapping mechanism, Dr. Zhang's group created a sitting drop system to culture A. oligospora, and noticed that nanocomposites were secreted from the fungal hyphae and traps. Upon further study using advanced microscopic techniques, they discovered that these nanocomposites contained highly uniform nanoparticles. Knowing the importance of nanoparticles in cancer therapy, Dr. Zhang's group investigated the potential capability of the fungal nanoparticles as an immunostimulatory and antitumor agent. Surprisingly, the fungal nanoparticles were able to stimulate TNF-α secretion from macrophages, and kill cancer cells in vitro.

This study by Dr. Zhang's group has proposed a new approach for producing novel organic nanoparticles from microorganisms under controllable conditions. It may open up a new avenue for controlling the synthesis of organic nanoparticles using synthetic biology. This exciting discovery is the first step forward in the development of natural nanoparticle-based therapeutics for cancer treatment, and demonstrates the importance of looking to nature for innovation in disease treatment.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

Discoveries

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project