Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymeric nanoparticles used to treat pediatric cancer

Abstract:
A research team in the US have reported promising findings on the potential for nanotechnology to deliver chemotherapeutic agents in a way that attacks cancer cells without harming healthy cells. To date, nanoparticle-based drug delivery approaches have been poorly developed for the treatment of childhood leukemia, which comprises 30% of childhood cancers. In the Nemours study, encapsulated dexamethasone ("dex") delivered to pre-clinical models with leukemia significantly improved quality of life and survival compared to the control receiving the unencapsulated drug.

Polymeric nanoparticles used to treat pediatric cancer

Germany | Posted on December 6th, 2012

Acute lymphoblastic leukemia (ALL) is the most common form of pediatric leukemia. Although 5-year survival rates for ALL approach 90% with available chemotherapy treatments, the deleterious side effects of the drugs, including secondary cancers and fertility, cognitive, hearing, and developmental problems, present a significant concern for survivors and their families. Dex is one of the most commonly used drugs to treat childhood leukemia and long-term systemic exposure to dex causes considerable side effects.

Studies conducted by the lead author A. K. Rajasekaran, PhD, and his team at Nemours in collaboration with Xinqiao Jia, PhD, and her team at the University of Delaware, used polymeric nanoparticles containing chemotherapeutic agents to ensure controlled delivery of drugs to cancer cells in preclinical models. "There are currently seven or eight drugs that are used for chemotherapy to treat leukemia in children," said Dr. Rajasekaran. "They are all toxic and do their job by killing rapidly dividing cells." However, he explained, these drugs don't differentiate cancer cells from other, healthy cells. "The good news is that these drugs are 80-90% effective in curing leukemia. The bad news is that many chemotherapeutic treatments cause severe side effects, especially in children." He posits that it will take researchers hundreds of millions of dollars and many years to find better alternative drug treatments. In the interim, scientists like Dr. Rajasekaran and his colleagues are working on novel ways to deliver existing and affordable drugs to children. "Our polymer synthesis and particle engineering are guided by the clinical need for reducing the side effects of cancer drugs," Dr. Jia commented. Vinu Krishnan, the first author of the study and a chemical engineer and graduate student in Materials Science and Engineering, said, "I am very excited about the results and look forward to taking this to the next level and introducing this approach for the clinical treatment of childhood leukemia". Students in Dr. Jia's group contributing to this work also include Xian Xu and Xiaowei Yang.

To date, advances in nanotechnology have been primarily concentrated around adult cancers. Nanotechnology involves the use of encapsulated particles of drugs that go into the core of the cell. The nanoparticles stick only to the cancer cells and destroy them by delivering the drug precisely, without detecting or harming the normal cells. In preclinical models of leukemia, Dr. Rajasekaran and his team were able to improve survival and quality of life via nanotechnology. Encapsulating the drug uses one third of the typical dose, with good treatment results and no discernible side effects. In addition, the mice that received the drugs delivered via nanoparticles survived longer than those that received the drug administered in the traditional way.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper:

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanomedicine

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Nanotechnology Treatment Found to Inhibit Mesothelioma Tumor Growth November 16th, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project